PLAYING RAMSEY GAMES USING A
O-LEARNING AGENT

TIANBO YANG ADVISOR: YUXIN ZHOU

ABSTRACT. In this paper, a Q-learning agent is trained to play graph Ramsey
games with the goal of verifying results for small Ramsey numbers already
found in literature. An overview of the theory behind Ramsey games and the
Q@-learning algorithm will be provided before moving on to describe results. We
then analyze what reinforcement learning can tell us about Ramsey theory and
whether this method is applicable to larger Ramsey numbers.

1. INTRODUCTION

Finding new Ramsey numbers is one of the long-standing unsolved problems
in combinatorics. Over the years, many approaches have been tried to tackle
the problem using graphs. A prominent methodology has been to play Ramsey
avoidance games, but given the limitations of human analysis and computational
power, this method has been traditionally restricted to small Ramsey numbers.
This paper tests the efficacy of reinforcement learning as a new tool of analysis.
A @-learning agent is trained to play graph Ramsey games. In sections 2 and
3, we provide relevant background on graph Ramsey theory and @Q-learning. We
then move to discuss the methodology by which we trained the algorithm in the
fourth section. In the fifth section, we analyze in detail the performance of the
model and what it can reveal to us about Ramsey numbers. Finally, we conclude
by discussing the limitations of this methodology and future plans to upscale the
capabilities of the model.

2. GRAPH RAMSEY THEORY

A popular analogy to derive some intuition for Ramsey numbers is to imagine
guests at a party. Some guests know each other, some don’t. The Ramsey number
R(m, () is the minimum number of guests such that one of two things must be
true: either m of those guests know each other, or ¢ of those guests do not know
each other. Formally:

Date: 2024-04-20.

2 TIANBO YANG ADVISOR: YUXIN ZHOU

Definition 2.1. The cliqgue Ramsey number on two colors R(m,{) is the least
positive integer n such that for any arbitrary partitioning of the edges of the
complete graph K, into two color classes P; and Ps, either the edge-induced
subgraph (P;) contains a graph isomorphic to K,,, or the edge-induced subgraph
(Py) contains a graph isomorphic to K.

For example, the statement that R(3,3) = 6 implies that no matter how the
edges of the complete graph Kj is partitioned into two color classes, there must
exist a color such that edges of that color form a graph that contains a K3 (known
colloquially as a triangle). This statement will be proven later in this section.
Ramsey numbers are not just limited to cliques and two color classes. We can
extend this definition to any type of graph and any number of color classes to
arrive at the generalized definition of Ramsey numbers.

Definition 2.2. [5] For a collection of graphs My, My, ..., My, the Ramsey num-
ber R(My, Ms, ..., My) is the least positive integer n such that if (P, Pa, ..., Px)
is an arbitrary partition of the edges of the complete graph K,,, then for some i,
the edge-induced subgraph (P;) contains a graph isomorphic to M;.

We say that R(My, My, ..., My) is symmetric if My = My = ... =2 M. Other-
wise, we call it an asymmetric Ramsey number.

In a graph setting, Py, P, ..., Py are usually represented as k color classes,
and so the partition (Py,Ps,...,Px) is a k-coloring of the graph K,. Thus,
the problem of finding Ramsey numbers can be understood as the optimization
problem of finding the smallest complete graph (in terms of the number of vertices)
such that one of a set of subgraphs, each with their individual type and/or color,
must exist.

However, it can be difficult to find an algorithm for determining the solution
to this problem. One approach is to gamify it.

Definition 2.3. The Ramsey avoidance game for determining whether n = R(M;, Ms, ..., My)
is a turned based game played on the complete graph K,, with initially uncolored

edges between k players P;, P, ..., P,. Players are each associated with their own

unique color and take turns choosing an edge to color in K,,. Player P; loses when

a subgraph of P;’s coloring is formed that is isomorphic to M;. If K,, is completely

filled and no player has lost yet, then the game is considered a draw.

With these game rules, the following theorem holds:

Theorem 2.4. If n > R(My, M, ..., M), then there does not exist a sequence
of moves in the corresponding Ramsey avoidance game on n wertices that results
n a draw.

PLAYING RAMSEY GAMES USING A Q-LEARNING AGENT 3

</

FIGURE 1. An example of a game on Kj that resulted in a draw.
This example was actually produced by a @)-learning agent playing
with itself.

With this theorem, we can finally prove that R(3,3) = 6. Consider the following
lemma:

Lemma 2.5. [11] R(3,3) = 6.

Proof. By definition, the Ramsey avoidance game for R(3, 3) is played on an edge-
2-colored Kg, with the colors red and blue representing the 2 players respectively.
Both players have the objective of not forming a monochromatic 3-edge subclique
(also called a triangle) of the game graph in their own color. Take any vertex
v of the game graph Kj. Since there are 5 edges connected to v, at least three
of them will have the same color by the pidgeonhole principle. Without loss of
generality, assume that this color is red. Consider the three vertices connected
to v through these three edges; either one of the edges that connect two of these
vertices is red (and then there is a red triangle with the edges connected to v), or
all three edges that connect these three vertices are blue (and then there is a blue
triangle). Either way, a draw is not possible. On the other hand, if we play on
K5, we do not have the situation that at least three edges connecting to the same
vertex will have to have the same color. Then we can avoid creating a triangle of
either color, as shown in Figure 1. Thus, six is the smallest number of vertices in
the game graph such that either a red triangle must be formed or a blue triangle
must be formed. O

4 TIANBO YANG ADVISOR: YUXIN ZHOU

From analytical methods similar to the one shown above, we can determine the
values of other small Ramsey numbers. Below is a chart documenting the values
of clique Ramsey numbers already found in literature.

B 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10
6 9 14 18 23 28 36 40-42
18 2509 36-40 49-58 59[13_79 73-106 92-136
43-48 58-85 80-133 101-194 | 133-282 | 149!'3.381

102-161 | 115[13-273 | 1341131427 | 183-656 = 204-949
205-497 | 219-840 | 252-1379 | 292-2134
282-1532 | 329-2683 343-4432

565-6588 = 581-12677

© 0 N o g b~ W N =

=
=)

798-23556

FIGURE 2. Most known Ramsey numbers [4]

As mentioned above, Ramsey numbers can be defined for any kind of graph, not
just limited to cliques. A well studied alternative to cliques is the cycle Ramsey
number.

Definition 2.6. The Ramsey number R(M;, My, ..., My) is a called a cycle Ram-
sey number if the graphs My, Ms, ..., M are all cycles.

Denote by C; the cycle of length i. Since K3 = (5, it is fairly evident from
Lemma 2.5 that R(C3,C3) = R(3,3) = 6. Vclav Chvtal and Frank Harary fur-
ther proved that R(Cy4,Cy) = 6 [10]. Ramsey theorists have also discovered the
following pattern regarding asymmetric cycle Ramsey numbers on two colors:

Theorem 2.7. [7]

2n — 1 for 3 <m <mn,m is odd, (n,m) # (3,3)
R(Cp,Cp) =qyn—14+%2 for 4 <m <mn,m and n are even, (n,m) # (4,4)
max{n — 14 %,2m — 1} for 4 <m < n,m is even and n is odd

Ramsey games provide a solid theoretical method for determining Ramsey num-
bers. In practice, however, these games quickly become computationally un-
tractable for large n. To combat these limitations, we introduce reinforcement
learning as a new analytical tool.

PLAYING RAMSEY GAMES USING A Q-LEARNING AGENT 5

3. (Q-LEARNING

Reinforcement learning is a machine learning paradigm in which a learner,
called an agent, learns to interact with an environment by mapping situations
(called states) to actions in order to maximize a goal defined by a reward function.

Agent
/’,_--} Policy i B
7 A ..
/ 1) \
’ | Policy update \
!/ \

/ ! \
! . . \
f Learning algorithm \

(Change of) State A Action
1

\ L I
\ ! I
\ ! ’

\ ' Reward ’

\ I /
\ 1 s
~ ’
~ ”

FIGURE 3. A typical reinforcement learning system [2]

An example of a very successful reinforcement algorithm is ()-learning devel-
oped by Christopher Watkins [6]. It is an incremental method for dynamic pro-
gramming that works by successively improving its evaluations of particular ac-
tions at particular states [1]. Over the past decade, @Q-learning algorithms have
become adept at playing turn-based, finite-state games with a clear objective,
such as chess, blackgammon, and go [6]. This aptitude motivated our selection
of this particular algorithm, since Ramsey avoidance games are a clear example
of that kind of game. Below, we provide a cursory description of the algorithmic
foundations of)-learning.

Consider a computational agent moving in some discrete, finite world (or set
of states) X, choosing one from a finite collection of actions A at every step. The
world constitutes a controlled Markov process with the agent as a controller. At

6 TIANBO YANG ADVISOR: YUXIN ZHOU

the i-th step, the agent is equipped to register a state x; € X of the world. From
x;, there exists an action space A; C A consisting of the set of valid actions the
agent can take. It can then choose an action a;; € A; accordingly. The agent re-
ceives a probabilistic reward r;,, whose mean value R,,(a;,) depends only on the
state and action. Choosing a;; results in the state of the world changing proba-
bilistically to another state 2+ € X. We denote this probability by P, .+ (a;;).

The agent is tasked with determining an optimal policy (or course of action)
that maximizes total discounted expected reward. By policy we mean some func-
tion ¢ that maps a state x; to some action a;; taking it probabilistically to some
new state 27, essentially a function that defines the decision making of the agent.
By discounted reward, we mean that rewards received t steps in the future are
worth less than rewards received now, by a factor of A\f, where)\ is some fixed
hyperparameter with a value between 0 and 1. Then immediately after taking an
action that ¢ recommends, the agent expects to receive the reward R,,(¢(z;)) and
move with probability P, .+(¢(x;)) to 2t with some measure of expected future
reward, called value.

Definition 3.1. [1] For a policy ¢, the action value (or @ value) of an action a
at state x; is defined recursively as

Q%(i,0) = Ro,(a) + XY Poor (a)Q% (2, ¢(2™)).

Definition 3.2. [1] The value of state x; under a policy ¢ is defined by
Vd)(xi) = Qd)(ﬂﬁi, o(x4)).

By the theory of dynamic programming, there exists at least one optimal policy

¢* such that
¢*(2;) = a : max(Q? (z;,a)).

Then

V¢>* ('r’L) = maXaEAi{Qd)* (:Ci, CL)}
Denote Q* := Q¢ and V* := V¢". We can calculate V* and ¢* using dynamic pro-
gramming provided that R,,(a) and P, .+(a) are known [1]. The @-learner, then,
is an algorithm to solve for ¢* in an efficient manner without initially knowing
these values by estimating the action values.

Observe the difference between state value and action value. In state value, your
immediate reward R,,(¢(x;)) is determined by the decision your policy chooses at
state ;. In action value, on the other hand, your immediate reward is determined
by the executing the action in question a;; at state x;, regardless of your policy.
Policy is followed afterwards when considering expected future rewards.

PLAYING RAMSEY GAMES USING A Q-LEARNING AGENT 7

In practice, computing action values directly using the recursive definition is
too computationally expensive to be practical. As mentioned above, one popular
way to reduce the computational complexity is to store the action values in a
lookup table and use dynamic programming. Below, we describe the update rule
for this process.

Algorithm 3.3. [1] Q-learning is an incremental method, meaning that it hap-
pens in a sequence of distinct episodes, each corresponding with an action the
agent takes. The initial action values Qo(x,a) for all x € X and a € A are usu-
ally randomly or arbitrarily set, and the algorithm updates them with each episode.
Also defined before the training process is a learning factor oy, which controls how
much the action values are updated each episode. In the ith episode, the agent

(1) observes its current state x;
) selects and performs an action a;
) observes the subsequent state x;
) receives an immediate payoff r; = Ry, (a;) for some predefined reward func-
tion R
(5) updates its Q;—1 values for all states v € X and actions a € A using a
predetermined learning factor o; by

(2
(3
(4

(1 = a)Qi—1(z, @) + a(r; + Amazpen {Qi—1(z,0)}) if (x = z) A (a = a;)
Qi-1(z, a) otherwise

Qi(r,a) = {

where matye A {Qi_l(xj, b)} represents the agent’s estimation of the great-
est possible future reward from going to state x; .

Assuming that the @Q;(x,a) is calculated using a look-up table representation,
and that there is an infinite number of (not necessarily continuous) episodes for
each starting state and action, the algorithm described above has the following
convergence theorem:

Theorem 3.4. [1] Let i(x,a) be the episode index of the jth time that action a
is tried in state x. Given bounded rewards |r| < R, learning rates 0 < a; < 1, and
Z aij(z,a) = 00, Z (aij($,a)>2 < 00, vxa a,

=1 =1

J

then Q;(z,a) = Q*(x,a) as i — oo for all x,a, with probability 1.

8 TIANBO YANG ADVISOR: YUXIN ZHOU

4. METHODOLOGY

Say that we are interested in finding a lower bound for R(M;, Ms). Recall from
Theorem 2.4 that the existence of a draw in a Ramsey avoidance game on a graph
with n vertices implies that R(M;, M) > n. Then, it follows that an algorithmic
method for establishing the lower bounds of Ramsey numbers can be attained by
finding whether a draw exists when playing a Ramsey avoidance game on a graph
with n vertices. If a draw is found, we repeat the process on n + 1 vertices, and
so on, until we can no longer find a draw. Thus, all we are missing is a suitably
powerful algorithm for finding draws given an arbitrarily large number of vertices.
In this paper, we will use Q-learning for this purpose.

Now we describe the implementation of the ()-learning algorithm for playing
Ramsey avoidance games with two color classes (or “players”). As stated in sec-
tion 3, -learning is an iterative process in which we define an environment, in our
case, the Ramsey avoidance game, and have the agent play the game repeatedly,
improving the action values associated with each action based on the outcomes
from playing said action. To address issues with cooperation between players,
single agent will make the decisions for both players. We employ a traditional
lookup table implementation based on the principles of dynamic programming.
Compared to other model classes such as neural networks, the advantage of us-
ing a lookup table lies in their interpretability and relatively transparent decision
making. We also tried a neural network implementation using the library Py-
Torch, but preliminary testing indicated that the increased training time did not
justify the single digit percentage improvements in accuracy, and so the idea was
dropped.

The lookup table implementation involves using environmental parameters such
as the size of the action space and the number of states to construct an array for
keeping track of action values during the training process. This technique, known
as dynamic programming, massively reduces the computational complexity the
training algorithm since the action values of the previous episode can now be
simply searched for in an array instead of computed recursively. Let n denote
the number of vertices in the game graph. Then the number of possible actions
at the start of the game is the same as the number of edges in the graph (g)
Thus, we can represent our action space as a (g’) x 1 array. On the other hand,

the maximum possible number of states in our game is 2(5). Thus, our lookup

table can be represented as a 2(3) x (Z) array. Denote the lookup table by @)
and let Q;(x,a) be its value in row x and column a after the ith training game,
representing the action value ascribed to taking action a at state x.

PLAYING RAMSEY GAMES USING A Q-LEARNING AGENT 9

Here, we simplify our notation by equating an episode with a training game
rather than with a single action. Recall from Algorithm 3.3 that ¢ denotes the
current episode count, and that episodes correspond to individual actions taken
by the agent. In the Ramsey avoidance game, each action is only taken at most
once per game since edges cannot be removed or colored more than once. Thus,
action values are updated only once per game and there is no distinction between
associating Q;(z, a) with the ith game or the ith action. From this point onwards,
we equate the ith episode with the ith training game and specify when we are
talking about individual actions.

During training, we want the agent to explore different strategies to minimize
the chance it will become stuck with an suboptimal policy. This is usually accom-
plished by letting the agent sometimes play a random move instead of following
its current policy, giving it a chance to discover a better policy. The exploration
algorithm we employ is called e-decay. In the ¢th training game, the agent has a
probability €; chance to choose a random available action; otherwise, it will fol-
low the current policy by choosing the action corresponding to the largest action
value in the current lookup table. At the start of the training process, ¢g = 1
and decreases incrementally each episode. The effect of e-decay is to let the agent
explore a lot at the beginning of the training process (when exploration is most
useful) and gradually adhere more to the policy in later games.

To remove illegal actions, we use a technique called action masking, where after
each step, the column of action values representing the action the agent just took
is set to a large negative value for the remainder of the game, thereby guarenteeing
that the agent will not choose that action in future moves.

To check if the win condition of the game is fulfilled, we simply designate edges
placed during odd steps as “red” and edges placed during even steps as “blue”
and use the depth-first search algorithm to find if the graphs M; and M, are
contained within the subgraphs formed by the respective color classes. If either is
found, the agent receives a negative reward (-50) and the game ends with a loss.
If neither is found, the game continues until step (g), when if M; and M, are still
not found, the game ends with a draw and the agent receives a positive reward
(4+50).

Other optimizations to the reward structure that were found to improve training
quality include rewarding the agent for playing edges not adjacent to an already
played edge of the same color and “blocking” the opposing player from forming
My or M5 in one color by preemptively completing the graph using the other color.
We also penalize the agent for playing edges that are adjacent to an already played
edge of the same color to discourage M; and M, formation. These intermediate
rewards encourage the agent to play longer games, discourage it from making
moves that lead to a loss, and to “help” the other player. The table below

10 TIANBO YANG ADVISOR: YUXIN ZHOU

summarizes the rewards given to the agent when various conditions are observed
at each state, subject to further optimization:

Condition Reward r

Draw +50

red player forms M; -50

blue player forms My -50
“blocking” opponent from losing +40
form larger cycle than M; and M, +30
play adjacent edge -40

play non-adjacent edge 10
illegal move -100

otherwise 0

TABLE 1. Reward Structure

The action values in the lookup table are updated according to Algorithm 3.3
after every game. In our implementation, we use the learning rate « = 0.1 and
the discount factor A = 0.95. For some action a played from state x, we update
action value Q;(x,a) by the update rule

Qi(z,a) =0.9Q;_1(x,a) + 0.1(r + 0.95maxye 4 {Qi_l(mj', b)})
where r is the reward given to the agent for making action a according to Table
1.
Training involves the agent playing Ramsey avoidance games repeatedly to
gradually improve the policy. In the next section, we will discuss and analyze the
resulting models.

5. ANALYSIS

We now analyze the performance of our QQ-learning model when solving for
various Ramsey numbers using the Ramsey avoidance game. We focused on cycle
Ramsey numbers since Theorem 2.7 allows us to check our observations against
the theoretical true value of the Ramsey number. First, we clarify some notation.
When speaking of a game R(x,y) > n, we mean a Ramsey avoidance game on the
graph K, in which player 1 must avoid forming a x-cycle and player 2 must avoid
forming a y-cycle. If a draw in this game can be found, then we have successfully
established that R(C,,Cy,) > n. The Training draw rate refers to the proportion
of training games that resulted in a draw. While not a particularly significant
performance metric, the training draw rate can still be interesting to look at since
a low value can indicate that the model is struggling during the learning process.

PLAYING RAMSEY GAMES USING A Q-LEARNING AGENT 11

The testing draw rate refers to the proportion of games that result in a draw from
conducting 1000 testing games of the model under the specified conditions. This
statistic will be the primary performance metric we will be using to evaluate our
model.

£l

FIGURE 4. A Ramsey avoidance game for finding if R(6,6) > 7
that resulted in a draw.

To establish a baseline for comparison, we first play the Ramsey avoidance game
using a random algorithm in which the actions are always decided by random
number generator. We run this random algorithm 4 times for good measure on
each Ramsey avoidance game of interest to obtain the values shown in Table 2.

We then train our Q-learning agent with 1000, 2000, 5000, and 10000 training
games. Table 3 depicts the resulting draw rates from 1000 testing games in which
the agent’s actions strictly follow the policy laid out by the actions values obtained
from training.

A cursory comparison between Tables 2 and 3 shows that our Q-learning model
performs substantially better than the random algorithm. However, in order to
generalize our model to be able to solve for larger Ramsey numbers in the future,
we care about its ability to find draws in general, not its ability to find any
specific draw. In other words, we want the model to be able to adapt to changing

12 TIANBO YANG ADVISOR: YUXIN ZHOU

FIGURE 5. A Ramsey avoidance game for finding if R(4,8) > 8
that resulted in player 2 (blue) losing.

TABLE 2. Random Algorithm

Game Testing Draw Rate

R(3,3) > 5 0.0490, 0.0440, 0.0480, 0.0460
R(4,4) > 5 0.2710, 0.2940, 0.2650, 0.3050
R(3,4) > 6 0.0130, 0.0160, 0.0130, 0.0210
R(6,4) > 6 0.0870, 0.0870, 0.0820, 0.0740
R(6,6) > 7 0.0480, 0.0400, 0.0400, 0.0400

circumstances instead of only recreating the same exact draw over and over again.
A good way to test this ability is to introduce an element of randomness into the
testing process. In one test, we let each action have a 10% chance of being decided
randomly instead of following the policy. In the other test, we let the first move
of each player be decided randomly and follow the policy from there on.

To better evaluate the performance of the model under the various testing con-
ditions, we can plot test accuracy vs the number of training games for individual

PLAYING RAMSEY GAMES USING A Q-LEARNING AGENT 13

TABLE 3. Q-learning Model (Follow Policy During Testing)

Game Training Games Training Draw Rate Testing Draw Rate
R(3,3) > 5 1000 0.8010 0.9430
R(3,3) >5 2000 0.0170 0.0050
R(3,3) > 5 5000 0.9170 0.9510
R(3,3) > 5 10000 0.5159 0.0060
R(4,4) > 5 1000 0.7540 0.9680
R(4,4) > 5 2000 0.8595 0.9710
R(4,4) > 5 5000 0.9562 0.9700
R(4,4) > 5 10000 0.5664 0.0150
R(3,4) > 6 1000 0.0320 0.0020
R(3,4) > 6 2000 0.8835 0.9310
R(3,4) > 6 5000 0.0022 0.0060
R(3,4) > 6 10000 0.0616 0.0110
R(6,4) > 6 1000 0.0110 0.0070
R(6,4) > 6 2000 0.0120 0.0070
R(6,4) > 6 5000 0.0204 0.0070
R(6,4) > 6 10000 0.1246 0.9410
R(6,6) > 7 1000 0.0000 0.0000
R(6,6) > 7 2000 0.0005 0.0000
R(6,6) > 7 5000 0.0472 0.0150
R(6,6) > 7 10000 0.1201 0.0150

games. As shown in Figure 6, the model’s testing draw rate suffers heavily when
randomness is introduced to the testing process. This suggests that the agent
struggles to adapt to unfamiliar situations. Another interesting observation is
that for any given number of vertices, there seems to be an optimal number of
training games for the best testing performance. Training substantially more than
this optimal number causes the model to overfit and the test accuracy to plum-
met. From the plots, we can see that for games on 5 vertices, the optimal number
of training games seems to be less than 5000, for 6 vertices, the optimal number
seems to be around 10,000, and for 7 vertices, we need more than 10000 training
games, perhaps 15000 or 20000. We are currently in the process of training for
larger numbers of games to verify this hypothesis.

14 TIANBO YANG ADVISOR: YUXIN ZHOU

Game R(3,3) > 5 Game R(4,4) > 5
1 — T 1r—= 7
g 08} \ . g 08} N\ .
:8: 06l i Zg: 0.6 \ i
< o04)) 1 < 04) 1
< 02 | . £ oo VLT .
! Q‘\/Qc} Qb > N ! Q‘\jQq)‘ Qb‘ > N
Number of Training Games S Number of Training Games ~J
Game R(6,4) > 6 Game R(6,6) > 7
1 — \ 1— \ T
g 08} . g 08} .
g 06} . = 06 f
% 0.4+ : % 0.4+ :
< 02/ . < 02 .
! Q\/Qq) Qb | ~ N ! Q‘\/Qq) Qﬁa > N
Number of Training Games S Number of Training Games ~J
—a— Random —— Policy 10% Random First Moves Random

FIGURE 6. Testing Draw Rate vs Number of Training Games for
select Ramsey avoidance games of interest

6. FURTHER RESEARCH

Our Q-learning model and its subsequent testing successfully establishes rein-
forcement learning as a viable method for computationally establishing the lower
bounds of Ramsey numbers. Under normal testing conditions, our model demon-
strated its ability learn to find draws in Ramsey avoidance games on small num-
bers of vertices, while significantly outperforming the random algorithm. How-
ever, at the same time, testing exposes some of the limitations of reinforcement
learning. We already mention the problem of failing to adapt to unfamiliar sit-
uations due to the agent’s tendency to memorize and reconstruct draws it has

PLAYING RAMSEY GAMES USING A Q-LEARNING AGENT 15

already seen before. To address this issue, we have tried to introduce more ran-
domness into to training process to make memorization an unviable strategy, but
the results were highly inconsistent. The agent failed to learn any coherent strat-
egy from such a volatile and unpredictable environment. Experimenting with
ways to improve the model’s resistance to random noise will be one of our key
directions for future research.

Another area that has already undergone substantial improvement since the
completion of the iteration of the model showcased in this paper is its ability to
train on larger numbers of vertices. Due to memory constraints on our compu-
tational resources, we were only able to train games on 7 vertices or less. Our
environment contained many redundant states that can be eliminated using meth-
ods such as vertex permutation. Through such optimizations to our environment
as well as the implementation of dynamic memory allocation, we were able to
substantially increase the number of vertices the agent can play on to at least 9.
We have not yet determined what our new upper limit is.

Training on larger numbers of vertices reveals the final limitation of reinforce-
ment learning; since the proportion of games that are draws decreases for larger
numbers of vertices, it becomes increasingly difficult to find draws. The model
will need more and more training games in order to produce results. This problem
will be the most difficult to overcome in the long term since there is only a finite
amount of computational resources that can possibly be mustered for this project.
Theoretically, there may be an upper limit to the size of the Ramsey avoidance
game the Q-learning agent can solve.

REFERENCES

[1] Christopher Watkins and Peter Dayan. “Q-learning”. Machine Learning, vol. 8, 1992, pg.
279-292. DOI: https://doi.org/10.1007/BF00992698.

[2] Kassiani Nikolopoulou. “Easy Introduction to Reinforcement Learning”. Scribbr, Aug.
2023. URL: https://www.scribbr.com/ai-tools/reinforcement-learning/.

[3] Marco Wiering and Martijn van Otterlo. Reinforcement Learning: State-of-the-art.
Springer, 2012.

[4] Neil Sloane et al. “The On-line Encyclopedia of Integer Sequences”. 2003. arXiv:
https://arxiv.org/abs/math/0312448.

[5] Paul Erdos et al. “Generalized Ramsey Theory for Multiple Colors”. Journal of Combina-
torial Theory, Series B, vol. 20 (3), 1976, pg. 250-264.

[6] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. 2nd edition,
The MIT Press, 2018.

[7] Stanislaw Radziszowski. “Ramsey Numbers Involving Cycles”. Progress in Mathematics,
vol. 285, Springer, 2011.

[8] Stanislaw Radziszowski. “Small Ramsey Numbers”. The Electronic Journal of Combina-
torics, 2021. DOI: https://doi.org/10.37236/21.

16 TIANBO YANG ADVISOR: YUXIN ZHOU

[9] Tom Needham. “Introduction to Applied Algebraic Topology”. Course Notes, 2019, pg.

30-107. URL: https://research.math.osu.edu/tgda/courses/math-4570/LectureNotes.pdf.

[10] Vclav Chvtal and Frank Harary. “Generalized Ramsey Theory for Graphs. II. Small Di-
agonal Numbers”. Proceedings of the American Mathematical Society, vol. 32, no. 2, 1972,
pg. 389-394. DOI: https://doi.org/10.2307/2037824.

[11] Wolfgang Slany. “Graph Ramsey Games”. DBAI Techinical Report. Institut fiir Informa-
tionssysteme Abteilung Datenbanken und Artificial Intelligence, 1999. no. DBAI-TR-99-34.
arXiv: https://arxiv.org/abs/cs/9911004.

	1. Introduction
	2. Graph Ramsey Theory
	3. Q-learning
	4. Methodology
	5. Analysis
	6. Further Research
	References

