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We discuss techniques and develop instrumentation used to measure the Vibrational Density of
Modes of disordered, athermal materials. An excess of low-frequency (floppy) modes when compared
with Debye scaling is associated with the liquid/disordered solid transition (jamming). In this
paper, we construct a system to apply constant compressive strain and acoustic perturbation to a
granular sample, whose particle velocites are then measured using piezoelectric ceramics. We then
use We then use Dickey’s (1969) methods (see Section 6.5), previously applied in thermal systems, to
calculate the Vibrational Density of Modes of a disordered sample using a velocity autocorrelation.
Changes in low frequency features (like peaks) in the Vibrational Density of Modes before, during,
and after perturbing the sample might correlate with a loss of rigidity in granular structure and aid
geohazard forecasting techniques.
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1. OVERVIEW

Our world is full of disordered materials. From cereal
in a bowl to traffic jams, disordered move in chaotic ways.
These systems can be hard to predict and understand be-
cause at a first glance it is difficult to see the patterns
in how they behave. Some instances of granular unpre-
dictability can be quite harmless, how grains of cereal be-
have when we enjoy them with a cold bowl of milk, but
failure of granular solids can cause earthquakes and land-
slides that result in huge losses of human life and infras-
tructure every year. This paper aims to use the Density
of Modes of granular matter to forecast such geohazards
which impact millions of lives every year.

In 1998, Liu and Nagel [1] hypothesized that all sorts
of disordered solids could be described using a phase di-
agram (Figure 1) featuring a phase transition, dubbed
”Jamming”. In this phase diagram, Liu and Nagel are
proposing that a disordered system can jam if the density
is high enough. Additionally, when a system is jammed,
one can unjam it by either raising the temperature or
applying stress. There is a Jamming Transition beyond
which disordered materials can fail and return to an un-
jammed configuration, controlled by packing density, tem-
perature or stress. This paper has since informed multiple
different studies leading us to a better understanding of
the Jamming Transition in disordered materials. This sec-
tion provides an overview of a few of these studies which
discuss how disordered materials behave differently from
traditional solids, liquids and gasses.

Jaeger, Nagel and Behringer [2] further review the
”Janssen Effect for granular solids 1” showing us that even
”solid” disordered materials behave in unintuitive ways.
If a regular solid were slowly stacked into a pile (say in a
tube), the pressure at the bottom would increase indefi-
nitely, but they showed that when a granular material is

1 The effect is named after H.A.Jannsen, who made this discovery
in the early 19th century.

Figure 1: Liu and Nagel [1] propose a possible jamming phase
diagram where different granular materials all share similar
properties

stacked (in the same tube), the pressure at the bottom
increases unto a maximum value that is independent of
height (Figure 2).

The distribution of forces in Figure 2(b) was found to
fit the following line, where c and f0 are constant.

P (f) = ce
f
f0 (1.1)

The Janssen Effect is a counter intuitive result that
demonstrates how granular matter functions very differ-
ently than conventional matter.

In the very same paper, Jaeger, Nagel, and Behringer
[3] also describe how granular material flows like a liq-
uid (granular hydrodynamics). Most theories on granu-
lar hydrodynamics consist of partial differential equations
analogous to Navier Stokes, but with much more complex
structure. This is because Navier Stokes equations us-
ing an averaging process over length and time scales that
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are much larger than the typical microscopic scales and
macroscopic scales we observe in granular flow.

Figure 2: (a) A piece of carbon paper at the bottom of the tube
containing granular matter was used to measure the forces on
the paper. (b) A log plot of the distribution of force P versus
the force f at the bottom of the tube [2].

Convective flow was first observed by Faraday over 180
years ago, but the underlying mechanisms are not well
understood. When particles are placed in a configuration
like in Figure 3 and vibrated using a sinusoidal driving fre-
quency (vertically) to induce some granular flow, we ob-
serve particles in the center moving upward and particles
near the side walls moving downwards in a thin stream.
Jaeger also showed that the direction of convective flow
can be reversed if boundary conditions were changed ap-
propriately.
The other feature of granular hydrodynamics Jaeger ob-

served was granular separation. Larger particles would
move to the top and smaller particles would collect at the
bottom. This distribution was observed regardless of par-
ticle density. Knight (1993) [4] also shows a connection
between convective flow and separation in systems that
are shaken vertically. Large particles collect at the top
due to convective flow but then are unable to return to
the bottom via the sides as they are not small enough
to slip through the cracks, leaving them stranded at the
top. Granular materials, unlike other fluids, can ”un-mix”
themselves in this way, which is counter-intuitive.

Figure 3: A figure demonstrating Jaeger’s experimental setup
to observe convective flow and separation [2].

When granular matter collides, it collides inelastically.
For example, if we drop one ball on a table, it will bounce
back, but a bunch of balls in a bag will land and not
bounce because of inelastic collisions between the balls
in the bag that dampen the momentum of the system.
Jaeger references a simulation (Figure 4) by Goldhirsch
and Zanetti [3, p 37] of 40000 colliding particles in a two
dimensional plane.

Figure 4: A simulation by Goldhirsch and Zanetti where 40000
particles collide inelastically in 2 dimensions. The coefficient
of restitution is 0.6 and the simulation time corresponds to 500
collisions per particle [2].

The presence of clustering in this figure is easy to see.
Multiple particles that collide inelastically will cluster to-
gether as they eventually settle. This specific type of clus-
tering is referred to as an ”inelastic collapse” of the sys-
tem. It is not well understood why clustering leads to long
chains of particles instead of large blobs.
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So, we have seen examples of granular solids that do not
function like we expect solids to, granular fluids that self
unmix themselves using convection and free granular flow
that collapses into long clustered chains of particles. Gran-
ular matter is not fully understood and that our current
theories of solids, liquids and gasses are perhaps too rigid
to describe something as disordered as the rich dynamic
materials of the earth.
Therefore, much of soft matter since 2000 has been fo-

cused on developing techniques to study disordered mate-
rials in all their various forms.

2. THE DENSITY OF MODES

The Vibrational Density of Modes D(ω) (DoM) of a
material measures how many modes a material possesses
at any given frequency. It is a measure of the different
ways a system can respond at any given frequency, and so,
it is a function whose purpose is to be integrated. When
we integrate a DoM function from some frequency ωa to
ωb, we should find the number of modes present between
those two frequencies.
This section focuses on the math behind the Density of

Modes function D(ω).

2.1. Debye Scaling

In 1912, Peter Debye proposed that we view solids as a
”phonon gas”. We provide a brief overview of his model
and the Density of Modes for a Debye Solid.
Debye described phonons as massless quantized vibra-

tions that move through the solid. Each phonon has a
specific energy, just like a wave. [5, p 459]

ϵ = hf =
hcs
λ

(2.1.1)

Where λ is the wavelength of the phonon and cs is its
speed. Phonons are bosons as their chemical potential is
zero for the same reason as for photons.
Note that since phonons behave like elastic waves in a

solid, they must have wavelengths greater than twice the
spacing between particles (d). λ ≥ 2d. This is illustrated
in Figure 5.
Phonons are different from other gaseous particles be-

cause there is a maximum upper limit to their energy (See
ϵf in Figure 6), called the Debye Cutoff. We have have
λ ≥ 2d, a lower limit on wavelength which places an up-
per limit on energy [5].
We know that the motion of one simple harmonic oscil-

lator has a characteristic frequency ωa. If there are two
simple harmonic oscillators, they must have two frequen-
cies, ωa and ωb. Then, if there are 3Na states (Na is the
number of particles, and each particle can oscillate in 3
dimensions), we must have 3Na characteristic frequencies.
The upper limit is given by [5]:

ϵD = hcs(
3Na

4πV
)

1
3 = 0.62hcs(

Na

V
)

1
3 (2.1.2)

Figure 5: All elastic waves must satisfy λ ≥ 2d. A wave with
λ = 6d/7 is shown to be indistinguishable from a wave with
λ = 6d in this figure [5, p 459].

It turns out that the Debye cutoff energy is simply a
function of the density of atoms Na

V and phonon speed
cs. Often, we write the cutoff energy (ϵD) as a frequency
(hωD) or a temperature (kTD). Stowe [5] solves for the
distribution of phonons given by: (for 0 ≤ ϵ ≤ ϵD)

dN =
9Na

ϵ3D

ˆ ϵD

0

ϵ2

eϵβ − 1
dϵ (2.1.3)

And the total energy of the Debye system is then given by
the sum of the energies of the individual phonons. Note
that D(T ) (in Equation 2.1.5) is called the Debye function
and is not a measurement of the DoM.

E = (
9Na

ϵ3D
)(kT 4)

ˆ ϵD/KT

0

x3

ex − 1
dx (2.1.4)

E = 3NakTD(T ) (2.1.5)

D(T ) = 3(
kt

ϵD
)3
ˆ ϵD/KT

0

x3

ex − 1
dx (2.1.6)

Schroder (1999) [6, p 280] describes the energy of
phonons (as quantized vibrational waves):

ϵ =
h2

8mL2
n2 (2.1.7)

n =

√
8mL2

h2

√
ϵ (2.1.8)

dn =

√
8mL2

h2

1

2
√
ϵ
dϵ (2.1.9)

dn can be thought of as the number of singular particles
per unit energy.
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Figure 6: Density of Modes of perfect non-interacting non-
relativistic particles in a three dimensional box. [6, p 280]
Note that D(ω) ∼ ωd−1 = ω2. Based on the maximum energy
for the system the states below ϵf are the occupied states.

So, Schroder sums over all energies times the number of
states with that energy, to find an equation for the Density
of Modes for a Debye Solid.

D(ϵ) = (
π(8m)3/2

2h3
)V

√
ϵ (2.1.10)

Where m is the mass of a particle and V the volume
of the solid. In d dimensions, a perfect Debye solid has a
Density of Modes D(ω) ∼ ωd−1. Figure 6 is a plot of the
DoM of a perfect Debye like Solid.
This model however only describes a perfect Debye

solid. In reality, disordered matter differs from Debye scal-
ing in a few ways. It is extremely important to note that
D(ω) ∼ ωd−1 only holds for a Debye solid. In the next
sections, we will be focused measuring how the DoM in
granular systems differs from Debye scaling.

2.2. The Density of Modes of granular materials

One of the striking differences between the Density of
Modes in Debye solids and disordered solids is that disor-
dered materials disagree with Debye scaling at lower fre-
quencies. In a disordered solid, we observe a plateau in
the DoM at lower frequencies (Figure 7) instead of the
expected scaling D(ω) ∼ ωd−1. In completely jammed
disordered solids, this plateau extends to ω = 0, while in
marginally jammed disordered solids, we can see that this
plateau begins some critical frequency ω∗. In this section,
we aim to explore this anomalous excess in low frequency
modes observed in the Density of Modes of granular ma-
terials.
Figure 7, a simulation by Xu et al [7] demonstrates this

concept. Crystalline materials behave like Debye solids, so
Figure 7(b) exhibits Debye scaling. However, Figure 7(a)
has a bump of excess low frequency modes.
When we measure the DoM of a disordered material, we

often will normalize it by dividing by Debye Scaling, and
therefore, we are able to note the frequency ω∗ at which
the anomalous low frequency modes are peaked. This is
the Boson Peak, and it is one of the most important fea-
tures of the Density of Modes in granular matter (Figure
8).

Figure 7: The Density of Modes simulated for 1000 3D glasses
over 100 different configurations. [7] (a) Shows the DoM for
marginally jammed solids and (b) for unjammed Debye-like
solids. Note the excess in low frequency modes.

Figure 8: The Density of Modes for a 2D system of colloidal
particles normalized to show the boson peak. The system
is compressed to different packing fractions to show how ω∗

changes with pressure.Note that the red plot is the lowest and
the pink plot is the highest packing fraction (and pressure).

2.3. The Boson Peak

The Boson Peak is perhaps the most striking feature
of the Density of Modes of disordered materials near the
jamming transition. Later, we will present a thermal tech-
nique used to measure the characteristic frequency ω∗ of
the Boson Peak in granular materials.

Chen et al [8] demonstrate the ability to isolate ω∗ by
normalizing the Density of Modes with respect to Debye
Scaling(Figure 8).

In a 2-dimensional system, Chen et al compressed col-
loidal thermosensitive hydrogel particles and noted the
change in the Density of Modes. They normalized the
system by dividing D(ω) by ω1 so we can clearly see the
boson peak and its characteristic frequency ω∗.

Owens et al [9] take this concept further in Figure 9.
Their experiment uses piezoelectric ceramics to measure
the Density of Modes. Unlike Chen, they also consider a
crystalline case to compare the amorphous particles with.
Instead of normalizing by dividing by ω2, they normal-
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ize by dividing the amorphous Density of Modes by the
crystalline measurement to isolate the boson peak.

Figure 9: Owens and Daniels [9] measure the Density of Modes
for (a) Ordered and (b) Disordered packings and (c) Ratio of
ordered packings to disordered packings. The black line in (a)
represents Debye Scaling

Since ordered solids are more Debye-like, we see a Bo-
son Peak when we divide the DoM of disordered packings
by the ordered packings. Figure 8 is a good example of
how the characteristic frequency ω∗ for a system changes
with pressure. As pressure increases, we observe ω∗ in-
creases, but much slower than it does in simulations with
frictionless spheres (Shown in Figure 10 for comparison)
[10].
Changes in pressure are one of the main factors causing

Figure 10: Liu and Nagel [10] measure the Density of Modes for
three dimensional ideal sphere packings without friction at var-
ious compressions. Their results show a much larger increase
in ω∗ as pressure increases than Daniels and Owens [9].

ω∗ to change. For example, an increase in pressure in the
earth might build up to a stick-slip failure event as pres-
sure is released. In this case, we would probably observe
ω∗ increasing steadily until failure and then dropping back
down after a loss of rigidity.

Blue et al [11] used a speaker to acoustically excite par-
ticles and piezoelectric ceramics in contact with these par-
ticles to measure the Density of Modes of airsoft pellets
and corn in 3 dimensions. Their setup is shown in Figure
11 and results in Figure 12.

A Boson Peak is very noticeable as the Density of
Modes measured deviates significantly from Debye scal-
ing D(ω) ∼ ω2 in 3 dimensions.

Figure 11: Blue et al [11] embed piezoelectric elements inside
the walls of an isolated box with particles inside it and excite
them with a speaker to measure the Density of Modes.

Blue [11] demonstrates the ability to accurately deter-
mine the Vibrational Density of Modes using piezoelectric
ceramic sensors on acoustically vibrated particles. Then,
we can calculate the Boson Peak using techniques by
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Figure 12: The Density of Modes measured using the setup in
Figure 11 of (a) Airsoft pellets and (b) Corn [11].

Owens [9] like in Figure 9(c).

3. THE JAMMING TRANSITION

Disordered materials can flow like liquids when shaken,
but they can also jam and gain rigidity if the shaking in-
tensity is too high or too low. A liquid with low viscosity
solidifies into a glass when the temperature is dropped
rapidly preventing crystallization. A foam becomes rigid
if stress is lowered and colloidal suspensions lose their abil-
ity to flow when the packing density is increased. In all of
these cases, a different control parameter brings the dis-
ordered system into a controlled state without changing
their structure.
Liu and Nagel [1] hypothesized a jamming phase dia-

gram that explains many aspects of jamming in a system
(Figure 13). Figure 13 exemplifies what universal factors
cause jamming in disordered systems.
O’Hern et al [12] studied ideal spheres at zero temper-

ature and zero shear stress. At low packing fraction Φ,
particles are free to move around and flow like a fluid. As
we increase the packing fraction, we eventually reach a
critical value Φc, where the system jams and transitions

Figure 13: The jamming phase diagram. Outside the green
area, a disordered system can flow, and inside, it remains
jammed. This diagram captures the Jamming Transition of
a system. The point J marks the jamming transition for ideal
spheres at zero temperature and applied stress [10].

into a state where any infinitesimal force will be resisted
by a force network between the spheres.

This critical value Φc is what Figure 14 captures.
O’Hern describes multiple ways in which this jammed
state achieved above the critical packing fraction is dif-
ferent from typical elastic solids and instead behaves sim-
ilarly to low temperature glasses. This is why we see the
jamming phase diagram shaped with a sharp discontinuity
at J . At this critical point (J), O’Hern [12] showed that
even slight increase in temperature caused low frequency
modes to excite and cause the marginally jammed solid to
lose rigidity. Similar observations were made for a slight
increase in applied stress or a slight decrease in density.

Figure 14: O’Hern et al measure the jamming transition point
J where Φ = Φc and the system transitions from order to
complete disorder [12].

One of the most interesting results from O’Hern’s work
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Figure 15: O’Hern et al measure the DoM for spherical glass
beads with harmonic repulsions at zero temperature (a) far
from Φc and (b) very close to Φc [12].

on the marginally jammed solid was his measurement of
the Density of Modes near and around Φc (Figure 15).
As a system approaches Φc, it develops an excess of low
frequency modes as its Boson Peak located at ω∗ drops
lower and lower. As a marginally jammed system moves
to become completely jammed (at Φc), we note ω∗ ≈ 0.
We observe this in Figure 14(b), where the Boson Peak
moves to ω∗ ≈ 0 as we move very close to Φc.

This is an exciting observation because we are now able
to tell, from any plot of the Density of Modes, how jammed
our system is, or how far it is from the jamming transition
point J , just by looking for how far the value of ω∗ is from
ω = 0 [12].

4. MOTIVATION IN GEOHAZARD
FORECASTING

The main motivation for us measuring the change in ω∗

as we approach a loss of rigidity is the applications in Geo-
hazard forecasting. Geohazards like earthquakes and land-
slides are unpredictable- causing millions in property dam-
age and injuring tens of thousands every year. Jerolmack
and Daniels [13] explain how most geohazard-prone land-
scapes are composed primarily of soft matter in the sense
that they are deformable and sensitive to collective effects.
Landslides and earthquakes are both geohazards that af-

fect our planetary landscapes, and are each informed by a
loss of rigidity at a granular level which we can study by
observing the rich dynamics of earth materials.

Jerolmack and Daniels explore the geophysical flow of
different earth materials based on shear rate and pack-
ing fraction ϕ. They categorize geophysical flows into
Soil Creep, Landslides, Debris Flow, Lahars and River
Flows, Turbidity currents, Pyroclastic Density Currents
and Fluid Muds; each associated with a different shear
rate and ϕ. In this section, we aim to take a deeper look
at Landslides and Earthquakes and the granular matter
that informs each process.

4.1. Granular matter in Landslides

Jerolmack and Daniels [13] categorize geophysical flow
of soft matter during landslides, which occur when wide
layers of surface granular matter loses rigidity. They show
that landslides occur in dry to partially wet systems with
low packing fraction ϕ and higher shear than systems that
demonstrate soil creep.

To demonstrate how landslides occur, Jaeger [2] col-
lected a pile of mustard seeds as seen in Figure 16, and
tilted them until the angle of repose θ. This is a simplified
model of what occurs during a landslide.

In Figure 16, granular matter (a pile of mustard seeds)
is tilted beyond the angle of repose, which causes slipping
and a loss of rigidity at a surface, just like a landslide.
As granular matter shifts in hilly regions, soil erosion and
other factors change the angle of repose of the system until
unjamming occurs at the surface. At this point, just like
mustard seeds, the upper layers of soil experience a loss
of rigidity and crumble as they flow downwards, causing
a landslide- which is the primary example of a geohazard
informed by granular failure at the surface.

4.2. Granular matter in Earthquakes

Earthquakes are more dynamic geohazards than land-
slides. Nevertheless, they too are caused by a loss of gran-
ular rigidity. In an earthquake, two tectonic plates (po-
tentially kilometers wide) press into each other as they
float on the mantle of the earth. At the point of contact,
there is a fine collection of granular matter referred to as
the fault gouge of the earthquake (potentially only a few
millimeters thick). This gouge controls the movement of
the tectonic plates and determines how the earthquakes
vibrations are observed on the surface of the earth.

Johnson et al [14] used glass beads to simulate a “Labo-
ratory Earthquake”. The beads were used at the granular
fault zone and were sheared under constant normal stress,
along with perturbations from acoustics waves. They mea-
sured that with acoustic emissions, large failure events
were disrupted in time, and often delayed by a cascade
of smaller events, indicating a sort of strain memory in
the granular material. Johnson’s paper shows the direct
impact of acoustic emissions on the granular matter in an
earthquake effects its duration and time-span.
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Figure 16: (a) A pile of mustard seeds tilted to an angle lower
than the angle of repose θ. (b) Failure occurs after we increase
the angle to be slightly greater than θ [2].

After noting that the granular matter in the gouge ef-
fects how and when earthquakes occur, Johnson followed
up [15] by shearing glass beads above 3MPa and applying
the same acoustic emissions. This time, they measured
a series of micro-failure events that had an exponentially
increasing rate of occurrence when the system was excited
using acoustic emissions. The increase in micro-slip failure
events eventually culminated in a larger stick-slip failure
event (Figure 17 and Figure 18).

Six years later, Hubert [16] used machine learning to
predict laboratory earthquake events (on sheared parti-
cles) using the fact that they are informed by granular
failure at the fault. Much like Owens [9] and Brzinski [17]
before them, they opted to use piezoelectric ceramics to
measure the velocities of particles.

Using the series of voltages from the piezoelectric ce-
ramics and their machine learning algorithm, Hubert et
al were able to predict the timing and duration of lab-
oratory earthquakes during shear of a quartz fault gouge
under normal stress ranging from 1 to 10 MPa. Important

Figure 17: (a) Showing the shear stress signal from the ex-
periment. (b) Showing the presence of microslip events during
acoustic emissions. (c) Showing how the presence of microslip
events correlate positively with stick-slip failure of the granular
matter in the laboratory earthquake setup [15].

Figure 18: Showing how piezoelectric ceramics in contact with
granular matter at the fault (in the gouge) were able to measure
fast and slow laboratory earthquake events [16].

aspects of this result are illustrated in Figure 19.
So, earthquakes duration, timing and size is likely re-

lated to the loss of rigidity at the fault and how granular
matter behaves in the gouge. Using the piezoelectric volt-
ages to perform a Density of Modes calculation and mea-
suring how ω∗ (or other similar low frequency features)
change before, during and after an stick-slip failure event
will likely tell us about how and why the loss of rigidity
occurs.

5. RESEARCH QUESTION

To summarize this project’s goals, first we will measure
the Density of Modes of a granular sample using Dickey’s
method [18] (Explained in depth in Section 6.5), similar
to how Owens [9] and Brzinski [17] have used it success-
fully in the past (with piezoelectric ceramics). Follow-
ing Hubert’s[16] observations using machine learning and
Johnson’s predictions [15] about granular matter inform-
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Figure 19: Hubert et al show their machine learning model
predicting aspects of laboratory earthquakes with piezoelectric
ceramics embedded in a quartz gouge. (a) Shows the stress and
stick slip failure events in blue. (b) Shows the displacement of
the piezoelectric elements in blue. In both figures, the red lines
are predictions from the machine learning model, are accurate
in predicting the timing and duration of stick-slip failure events
[16].

ing a loss of rigidity in a system, we hope that the char-
acteristic frequency ω∗ of the boson peak or some other
low frequency peaks in the DoM (or a related characteri-
zation of the shape of the DoM), when measured before an
granular failure event, will allow us to forecast said event’s
beginning, duration or intensity.
More succinctly, can a measurement of the low fre-

quency peaks in the Vibrational Density of Modes D(ω)
of granular sample forecast geohazards that are character-
ized by a loss of granular rigidity?

6. INSTRUMENTATION AND METHODS

In order to measure the Density of Modes, we must mea-
sure the velocities of particles so we can apply our calcu-
lations. To do this, we will first discuss instrumentation
that will be used to perturb and then extract velocity data
from a sample of grains.
Before we can perform any measurements, we must ex-

tract a sample of grains from the earth with minimal
disturbance to soil structure. To do so, we use a cylin-
der (24mm in length and 16mm in diameter) which we
place perpendicular to the surface and push into the soil.
To ensure that soil structure is preserved, the cylinders
have a polished, beveled chisel-edge (Figure 20). Once the
cylinder is embedded in the soil, we dig around it with-
out touching the sample so as to not disturb the granular

structure. Once the cylinder is easy to pull out, we use
grain-tight caps on each end and seal the sample.

Figure 20: An image of the sample cylinders with bevelled
edges containing a sample of collected soil.

With a sample collected, we can continue to a three step
plan, through which we will measure the density of modes
of the sample.

1. First, we apply a constant compressive strain to the
sample from the top of the cylinder (See Section 6.1).

2. Secondly, we begin to acoustically excite the sam-
ple from the same end using a piezostack or a me-
chanical shaker (while keeping the sample under the
compressive strain- See Section 6.2)

3. Finally, we use a piezoelectric ceramic of surface area
2mm × 2mm in contact with the grains to measure
their velocities (See Sectin 6.3). From here, we apply
a technique as described in [18] (see Section 6.5) in
order to measure the Density of Modes.

6.1. Compressing samples and measuring pressure

Before we start mechanically driving our grains, we
must design an apparatus that can apply sustained com-
pressive strain that can be measured accurately, and keep
this pressure constant as the sample is driven (Figure 21).

In the apparatus in Figure 21, a screw (marked in black)
is guided to push an acrylic disk (yellow) into the top of
the sample chamber (pink). The disk is made coupled to
the grains using a thin layer of molasses (See Section 7.3),
to ensure that it couples well with the sample. At the
point where the screw and disk come in contact, a Force
Sensing Resistor (red) is placed (FSR). This FSR is rated
for 0.1-300 MPa with a response time of 1 ms.

When the screw is turned, it extends to push the acrylic
disk into the sample chamber (upto 10mm), and thus
the FSR experiences a force and outputs a resistance
which can be measured using a circuit we designed (Fig-
ure 22). When unloaded, the FSR has an extremely high
resistance(> 20MΩ), and as force is applied, it’s resistance
drops.

The circuit in Figure 22 is a simple non-inverting ampli-
fier setup where the voltage measured at VOUT is inversely
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Figure 21: A schematic detailing how a sample of earth mate-
rial placed under constant compressive strain. After this, the
piezostack is activated and the sample can be driven with white
noise or with a single frequency.

Figure 22: A circuit diagram detailing how to measure Force
using an FSR [19].

proportional to the resistance of the FSR. As compressive
strain is applied, the resistance drops and the gain of the
amplifier increases (|G| = | RF

RFSR
|), increasing the voltage

output. So, we can now convert a force on the sample into
a quantifiable voltage (See Section 7.1).

6.2. Acoustic Excitation with piezostacks

When the screw in Figure 21 is turned and the com-
pressive strain is increased. This pushes the acrylic disk
(yellow) and piezostack (red) into the chamber (pink).
The stack can then be driven at any given frequency or
with white noise. Figure 23 details the dimensions of this
piezostack.

Figure 23: A detailed schematic of the piezostacks used to drive
the sample as shown in Figure 21.

As mentioned above, the piezostack is coupled with the
grains by placing a small acrylic disk between the two to
distribute the vibrations along with a few drops of mo-
lasses as a couplant (See Section 7.3) used to ensure good
contact between the sample and the stack.

6.3. Using piezoelectric ceramics to measure voltage

Now that we can apply compressive strain and mechan-
ically drive our samples, we can turn our focus to mea-
suring the DoM of the sample. This will be done using a
separate piezoelectric ceramic coupled to the other end of
the sample cylinder (Figure 25).

Piezoelectric ceramics have a crystalline structure that
is deformable when force is applied. When deformed, the
orientation of their crystalline lattice is squashed and thus
causing an imbalance in the charge per unit area which
causes a dipole vector to run through the crystalline lat-
tice which one can measure as a voltage across the crystal
(Figure 24).

Figure 24: A diagram showing how piezoelectric ceramics pro-
duce a voltage [20].

The voltage produced by these ceramic structures is pro-
portional to the force applied. Therefore, we can use their
voltage as a method of measuring the force exerted on
them by the particles in the chamber (and therefore their
acceleration as particle mass stays constant.)

We couple a piezoelectric ceramic with a sample of
grains as detailed in Figure 25. The ceramic is placed
on a piston driven by a screw. It is then pushed 1 mm
into the sample to ensure it is in contact with the grains.
Using this ceramic, we can now measure a charge that
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is proportional to the kinetic stress (acceleration) of the
particles in contact with the ceramic.

Figure 25: A schematic of the Piezoelectric ceramics are placed
in contact with the grains as we extract voltage from the ceram-
ics which is then passed through the instrumentation amplifier.

Now that we have a measure of the acceleration of the
particles in the form of a charge from our piezoelectric
ceramic, we must convert this into a reading of the Density
of Modes. The piezoelectric ceramic has a surface area of
2mm × 2mm, so the charge produced is quite small and
hard to work with. To make things simpler, we design an
amplifier that will do a few things.

1. Firstly, we want our amplifier to convert this charge
into a voltage.

2. Secondly, we want our amplifier to amplify the volt-
age to a more reasonable amplitude so we can ma-
nipulate it to find the DoM.

3. Finally, we do not want our amplifier to also amplify
the noise on our signal, thus, we need a series of
filters to get rid of this noise without changing the
signal before we amplify.

To covert the charge from the piezoelectric ceramic into
a voltage, we use a follower pre-amplifier (TLO72ACP).
As detailed in Figure 26, this preamplifier contains 2 Op-
Amps, which each connect to the two terminals of the
ceramic. Consider the first terminal of the ceramic, which
is connected to the positive terminal of the first Op-Amp
(at Terminal 3 in Figure 26). We can measure the charge
difference to ground by connecting our ground to Termi-
nal 2 on Figure 26, and our output (Terminal 1) will be
a voltage proportional to the charge on the piezoelectric
ceramic. A similar process is carried out with Terminals 5,
6, and 7 to measure the total charge (as a voltage) across
the piezoelectric ceramic.
Since the outputs of the TLO72ACP preamplifier will

produce a voltage difference proportional to the charge
difference on the two plates of the piezoelectric ceramic,
the output is small, and therefore must be amplified so
that we can apply our next components. We now amplify
the signal while including a high pass filter at this Op-
Amp to ensure the low frequency noise goes unamplified,
so that we only amplify the signal and not the noise(Figure
28).
The first amplification circuit is a standard non-

inverting amplifier circuit with a 10 MΩ resistor between
Terminals 1 and 2 (and Terminals 6 and 7) of the follower,

Figure 26: A circuit diagram detailing how the piezoelectric
charge is converted into a voltage. Terminals 1, 2, and 3 are Op-
Amp 1, Terminals 5, 6, and 7 are for Op-Amp 2, and Terminals
4 and 8 are for powering the Op-Amps with -15V and +15V
respectively [21] [22].

and a 100Ω resistor between the piezoelectric ceramic and
Terminal 2 (and 6). This should amplify our signal 10000
times. To filter low frequency noise, we can simply add a
1nF capacitor in parallel with each 10 MΩ resistor which
creates a high-pass filter with f3db =

1
2πRC = 16Hz. It is

also important to note that each side of the piezoelectric
ceramic contains some charge, and therefore some capaci-
tance (∼ 5 nF). Together with the two 100Ω resistors we
attached to Terminals 2 and 6, these form high pass filters
that form a high frequency cutoff.

Next, to further fine tune the high frequency cutoff, we
add a parallel RL filter, using a 47Ω resistor and 1.2µH in-
ductor in parallel on each output of the TLO72ACP (Ter-
minals 1 and 7). The purpose of this filter is to reduce the
interference between two consecutive taps to the piezo.
This effect is called diffraction, as the two signals overlap
and diffract similar to sound waves and primarly depends
on the material and shape of the piezoelectric ceramic.
Diffraction is often observed as a ringing/echoing effect
on the output signal caused by the piezo and is fixed by
dampening the relevant frequencies that cause the ringing
therefore letting the signal reach ground faster after a force
is applied to the ceramic. The 1.2µH inductor decides the
high frequency cutoff past which frequencies are attenu-
ated, and the 47Ω resistor decides how much attenuation
is applied.

Finally, we pass the two outputs through a differential
instrumentation amplifier- INA217 (Figure 27). This am-
plifier takes in the two signals (one positive and one nega-
tive) and amplifies them using the two Op-Amps labelled
A1 and A2 in Figure 27. Then, these two signals are com-
pared at the Op-Amp A3 and the difference is amplified
further based on an external resistor (1KΩ) with an gain
of 10. Any common noise present in both lines is filtered
out by the differential amplifier (as it does not appear in
the difference measured by A3). Finally, we measure the
output voltage against ground, and use it in Section 6.5
to calculate the Density of Modes of the sample.

6.4. Experimental Setup

Finally, the instrumentation in Sections 6.1, 6.2, and
6.3 is organized as shown in Figure 30 and the Density of
Modes is calculated as the compressive strain (and there-
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Figure 27: A circuit diagram detailing how an instrumentation
amplifier works and provides common noise rejection [23].

fore pressure) is varied. The method (summarized below)
will be applied to sands, clays, soils and other common
earth materials.

1. The samples are placed under compressive strain and
the pressure on the sample is noted using the FSR.
Pressures range from 0.1 MPa to 300 MPa (see Sec-
tion 6.1).

2. The samples are acoustically excited using the afore-
mentioned piezostacks. White noise or single fre-
quency noise are both supplied (see Section 6.2).

3. The piezoelectric ceramics in contact with the sam-
ples produce a charge proportional to the force ap-
plied to them. This force is proportional to the ac-
celeration of the particles (see Section 6.3).

4. The amplifier we constructed converts the electric
charge from the piezoelectric ceramics into a voltage
which is measured as a vector using LABVIEW.

The next step is to calculate and plot the Density of
Modes from the measured voltage.

6.5. Measuring the Density of Modes

The central technique we present in this paper is pro-
posed by Dickey [18] used to measure the DoM of thermal
systems from a series of velocities.

We have already seen how Owens [9] used piezoelectric
elements in Figures 9, 11 and 12 to measure the change
in ω∗ with pressure. Brzinski and Daniels [17] use similar
piezoelectric ceramics to measure a series of voltages pro-
portional to the accelerations of the particles (Figure 29).
In these two experiments, both Owens and Brzinski used
Dickey’s method[18] to measure the Density of Modes.
This section will describe in detail how this method can

be applied to calculate the Density of Modes and isolate
the low frequency peaks like the Boson Peak.

Since the piezoelectric ceramics (Figures 9 and 29) pro-
vide a voltage V that is proportional to the force applied
F = ma, we have:

V ∝ a (4.1)

We can perform an integral on the voltage V with re-
spect to time, to create a vector that is proportional to
the velocity of the particles.

ˆ
V dt ∝ v (4.2)

Now, we apply Dickey’s method, and use this vector
of velocities v to calculate the Velocity Auto-correlation
function with respect to a delay time τ .

Cv(τ) =

∑
i⟨vi(τ + t) · vi(τ)⟩τ∑

i⟨vi(τ) · vi(τ)⟩τ
(4.3)

The Velocity Auto-Correlation function (VACF) corre-
lates the velocity vector with itself over some delay time
τ . This means that it compares the velocity at a point
in time t to a point in time τ seconds ago, and marks
the relative change for every single τ and t. Brzinski [17]
and Owens [9] both use the VACF to compute a Fourier
transform, whose real part gives the Vibrational Density
of Modes D(ω).

D(ω) =

ˆ ∞

0

Cv(τ) · cos(2πωt) dτ (4.4)

This technique was proposed for thermal systems, but
Owens et al [9] (Figure 9) and Brzinski [17] (Figure 29)
use piezoelectric ceramics to measure the acceleration of
particles and then applied Dickey’s thermal technique to
measure the Density of Modes, thus demonstrating its ef-
fectiveness in athermal granular systems.

After we measure the Density of Modes, we divide by
ω∗2 (Debye scaling in 3D) to normalize the plot and isolate
the low frequency peaks (like the Boson peak).

6.6. Systems

Following Section 6.1-6.5, we need to fit our compres-
sive strain, acoustic driving and piezoelectric measurement
systems together to read the Density of Modes. Figures
30-33 detail this process below and Figure 34 details how
we link the systems up together.

Inside the experimental apparatus, we embed the FSR,
Piezostack and Piezoelectric ceramic with their corre-
sponding electronics.

Finally, we process the output from the Piezoelectric
ceramic and calculate the Density of Modes.
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Figure 28: A circuit diagram of the final amplifier circuit [9] [+personal communication with Owens] used to convert the charge
from the piezoelectric ceramic into a voltage and then amplify it into a readable signal to which we can apply Dickey’s method
from [18] (see Section 6.5).

7. CALIBRATION

After we have a working system, we need to calibrate
different components to ensure that our readings are accu-
rate and precise. Each of the 3 main measurements made
by the system require calibration-

1. The voltage from the FSR circuit (V) needs to be
translated into a force measurement (N).

2. We need to quantify what the expected response
(mm/s) is for the piezostack surface for a given fre-
quency (Hz) and input voltage (V).

3. We also need to quantify what the expected read-
out is from the piezoelectric ceramic (V) for a given
frequency (Hz) and driving voltage (V).

7.1. Calibrating the FSRs

From Section 6.1 and Figure 33, we have a circuit out-
puts a voltage for a given force applied to the FSR. The
compressive strain applied must be measured as a pres-
sure on the sample cylinder- we need a calibration curve

to do this. We apply a series of known forces2 in increasing
(inbound) and decreasing (outbound) by adding and re-
moving weight to the FSR respectively. Then, we measure
the output voltage through the circuit in Figure 33. This
gives us a plot that we use to convert measured voltage
into force (Figure 35).

The FSR voltage output creeps upwards when increas-
ing the weight and downwards when decreasing it, lead-
ing to a hysteretic effect that grows as the time between
measurements increases. This, ultimately, should not be a
large problem so long as we calibrate the FSR with weights
added at the same rate as we compress the samples, but
this consideration must be included in the standard oper-
ating procedures for the apparatus.

7.2. Calibrating the Piezo-Stacks

Following Section 6.2, we need to quantify how the
piezostack surface responds to a given voltage and a given
frequency. The stack manufacturers provide the data for

2 One can also use an Instron of choice if available.
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Figure 29: Brzinski et al [17] apply circular shear to granular
matter in a cell with 12 piezoelectric ceramics embedded in the
walls. (a) shows their setup. (b) shows details of the driving
system and (c) shows clearly how slips in the granular matter
appear on the voltage plots of the piezoelectric ceramics.

how much displacement to expect for a given driving volt-
age (Figure 36), which is important to for us to understand
how both the stack and the ceramic respond to different
input voltages.

We can drive the stack using a laser vibrometer at a
variety of frequencies. We can insert the stack alone into
the vibrometer and supply a range of frequencies (1Hz-
25KHz) while measuring velocity at the top. Then, we
can plot the velocity of the surface as measured by the
vibrometer as a function of frequency below (Figure 37).
This frequency response curve helps us understand how
the stack responds to a given input frequency.3

An issue with using a small piezostack to drive a sample
of grains has to do with the stack’s comparatively small
strain amplitudes. It is well understood that grains dissi-
pate kinetic energy well [25], so a small perturbation will
not be sensed by the piezoelectric ceramics on the other

3 There are multiple maxima for each frequency bin in Figure 37
because we ran multiple sweeps to ensure that the stack output
was not decaying as we ran the frequency sweep.

end. Additionally, if the piezostack is driven at a frequency
too high or for too long, it will generate too much heat and
burn up. This calibration curve (Figure 37) will allow us
to better select driving frequencies so that we can achieve
a higher driving velocity without burning out the stack.

7.3. Couplants

When providing acoustic perturbations to an amor-
phous sample, couplants are often used to provide an ef-
ficient path for sound to make its way to the surface of
the sample. Air is a relatively poor conductor of sound,
which means many different couplants are often used as a
low-loss secondary transmission medium that is less dense
than steel but more dense than air [26]. Couplants are also
often used to fill in the irregularities in sample surfaces and
provide a better contact for acoustic coupling [27] without
disturbing the movement of the acoustic driver. There
are many choices of viable couplants for most systems so
we often choose one that is harmless and easy to apply
smoothly and evenly and remove to the sample surface.

• Water: has a relatively high velocity and atten-
uation factor. This means that sound travelling
through water has a high velocity, and a relatively
hard time penetrating the surface of the medium
(high attenuation). The attenuation factor is calcu-
lated by measuring the percentage of sound absorbed
and scattered by the medium in question. Typically,
when using water as a couplant, we add glycol to de-
crease the attenuation factor4.

• Glycerin: has a very high velocity and attenuation
factor almost like water. It also has a refractive in-
dex close to many plastics and metals so it can be
used without the worry of bubbles distorting results.
It is often used for studying concrete, brick and plas-
tics.

• Oil: has the same velocity factor as water, but with
lower attenuation than both glycerin and water. It
is used to check surfaces that are difficult to immerse
in liquids as oil is less dense.

• Molasses: is our choice of couplant for its ease of
use and since members of our team are familiar with
using it to study rock samples and other earth mate-
rials. It has a similar velocity and attenuation factor
to glycerin and rarely forms bubbles.

Using a few drops of molasses to couple our piezostacks
to the acoustic drivers will allow us to significantly improve
the transmission of acoustic driving to the sample and
improve our signal-to-noise ratio, which in turn leads to
more accurate measurements.

4 At most 2 percent glycol- as more glycol causes bubbles which
distort results significantly
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Figure 30: The schematics for the experimental apparatus.

7.4. Calibrating the Piezoelectric Ceramics- Future
Calibration Work

Following Section 6.3, it is useful to quantify how our
measurement piezoelectric ceramic responds to different
frequency inputs. This process is similar to the process
described in Section 7.2. We can drive the piezoelectric
ceramic using vibrations from the piezostack. To do this,
we need to couple the stack and the ceramic using a few
drops of a couplant (mollasses) and then measure the out-
put voltage using the PCB from Figure 33 for a given input
frequency to the stack.

After measuring the output voltage, we need to account
for the piezostack’s response curve from Section 7.2, so
we need to divide our voltage output by the data (veloci-
ties measured) in Figure 37 to obtain an accurate plot of

voltage output vs input frequency.

We can repeat a similar process to measure the voltage
response of the piezoelectric ceramic for a given voltage in-
put to the piezoelectric stack. To do this, we need to mea-
sure the voltage output from the ceramic for a given volt-
age input provided to the stack, and then divide our data
by the response (displacement measured) of the piezostack
using Figure 36 to account for the stack’s voltage response
curve.

These two plots (frequency response and voltage re-
sponse) should afford us a deep understanding of what
frequencies and voltages we can expect our ceramics to
measure particle accelerations well at, and therefore will
allow us to select our driving frequencies and voltages ap-
propriately.
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Figure 31: The experimental apparatus.

Figure 32: The shielded PCB from Figure 28 inside a brass faraday cage to protect from EMI.

8. DISCUSSION AND CONCLUSIONS

The instrumentation constructed and described in this
thesis are built for 3 purposes. First, our apparatus can
accurately measure and apply constant high amounts of
compressive strain to amorphous earth materials on the

order of 300MPa of pressure for a small sample cylinder
(16mm Diameter x 24mm Height). Second, the apparatus
can also drive and acoustically perturb the sample using
a variety of waves or pulses supplied through an ampli-
fier. Finally, using methods described by Dickey [18] and
Owens et al [9] the piezoelectric ceramics (using an ampli-
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Figure 33: The PCB from Figure 22 used to measure the force from the FSR

Figure 34: A flowchart of how the components shown in Figures 30, 32, and 33 function together.

fier and a script) allow for us to measure the velocities of
particles and then calculate the Density of Modes of the
sample of grains. We can then use this measurement of
the Density of Modes to identify features (low frequency
peaks like the Boson peak) that provide us with informa-

tion about when the landscape (from where the sample
was taken) might undergo a loss of rigidity.

A few pressing questions still remain. Now that the
instrumentation is developed, how do we interpret read-
ings from the piezoelectric ceramics? Additionally, what
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Figure 35: A force (N) v/s voltage (V) plot used to calibrate
the FSR circuit.
[Special thanks to Clay Stoltenberg (Haverford) for help making
this plot.]

Figure 36: Thorlab’s hysterisis curve for driving distance (µm)
v/s input voltage (V) of the piezostack [24].

aspects of earth materials will this system tell us about?

8.1. Understanding the DoM measurement

A reading of the Density of Modes of a small sample of
earth materials will not accurately represent the Density of
Modes of the entire soil system, however, there are aspects
of the sample that are relevant to the entire soil system.
Owens et al [28] calculate the DoM using Dickey’s method
[18] and identify two distinct peaks of high wavelength
(low frequency) modes (Figure 38).
The first of these peaks shown in Figure 38 occurs at a

wavelength equal to twice the system length. The second,
and more interesting peak seems to depend on the spacing
between particles. In the DoM derivation (Section 2), we
note that the wavelength of phonons depends on the inter-
atomic spacing. Thus, in a granular system, Owens argues
that the wavelength of the peak is dependent on spacing

Figure 37: A laser vibrometer used to plot the input frequency
(Hz) vs the surface velocity (mm/s) of the piezostack.
[Special thanks to Nakul Deshpande (NCSU) for help with this
plot.]

Figure 38: Owens et al [28] impact samples of grains of diam-
eter 6mm, 8mm and a bidisperse packing with a pulse and use
piezoelectric ceramics to measure the Density of Modes using
Dickey’s method. They note two consistent high wavelength
(low frequency) peaks in the Density of Modes.

between grains and therefore increases under higher pres-
sure when grains are packed tighter.5 We hope to be able
to use these low frequency peaks in the DoM to calibrate
already existing geological monitoring software to detect
when system might unjam.

Aspects of soil structure like packing fraction, particle
shape and particle dynamics under constant compressive
strain all affect the way the low frequency peaks shift as
the sample approaches unjamming. We can quantify this

5 It is important to note that as pressure is increased, the speed
of sound in the grain packing changes, and this affects the rela-
tionship between the wavelength and frequency of a mode. This
relationship is also characterized by Owens [28], and is used to an-
alyze the frequencies of the peaks in the DoM using their phonon
wavelengths.
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failure in a set of samples by noting how the position of
these peaks changes under pressure and acoustic perturba-
tion. Then, we can use this information from the sample
to forecast how the entire soil system might respond using
Density of Modes measurements from seismographs and
other geological monitoring software.

8.2. Future Work

In Sections 7.1 and 7.2, we calibrate the FSRs and
piezostacks in order to quantify the measured force (with
FSRs) and better understand how our piezostack responds
to different driving frequencies and input voltages. The
work from Section 7.2 will be extended to calibrate the
Piezoelectric ceramic elements as described in Section 7.4.
This will involve first plotting the voltage produced by the
ceramic as a function of the input voltage provided to the
stack coupled with the ceramic, and then plotting a fre-
quency response curve by measuring the voltage output
of the ceramic for a given frequency input to the coupled
stack.
After the system is properly calibrated and the mea-

surements made by the FSRs, piezostacks and piezoelec-
tric ceramics are accurate, we will move on to measure
the Density of Modes of the small sample cylinder and
compare it with similar Density of Modes measurements
from geophones embedded in the ground (taken while per-
turbing the soil). This way, we will be able to see what
features of the Density of Modes of the entire landscape
are captured in the Density of Modes of the small sample
cylinder, and therefore what low frequency peaks we can
use to potentially forecast unjamming in the broader sys-
tem. The similarities and differences between the DoM of
the landscape and the samples will provide us with crucial
information about what aspects of the Density of Modes
might inform a loss of rigidity and what features are sim-
ply a product of our measurement techniques. Extending
Owens’ [28] analysis from Section 8.1, a peak that is depen-
dent on the size of the system (the sample cylinder) would
not be so relevant to the landscape where the sample is
extracted from, but a peak that is dependent on particle
spacing can provide information about when a system of
a particular grain size and structure might fail.
Owen’s [28] also showed that pulses can be used in

place of constant acoustic perturbation when measuring
the Density of Modes. Pulses offer more consistency in am-
plitude and wavelength and can also be stronger- making
obtaining a signal through a set of grains, which dampens
forces well, much easier. In the coming months, we will
modify our equipment (including the apparatus above) to
provide not only constant acoustic perturbation, but also
higher amplitude chirps (pulses). We can then compare
the Density of Modes measured using a pulse versus a
longer signal to confirm Owen’s results. Stronger (higher
amplitude) pulses will allow us to get signals through
larger and looser packings of grains that dissipate forces
well [25], and therefore will make our instrumentation
more dynamic and applicable to a larger variety of granu-
lar systems.
The same system will also be used to further study the

effects of acoustic perturbations on the structure of grain
packings using tomographic scans at LBNL (µ-CTs). To
do this, we will first place a sample under constant com-
pressive strain, measure the Density of Modes, and take
a µ-CT of the granular material. The resulting data (See
Figure 39 for an example) offers detailed information on
the full, 3-D structure of the material. After the ini-
tial scan, the sample will be acoustically perturbed and
the Density of Modes will be remeasured, followed by a
new µ-CT. The changes in Density of Modes and granular
structure will allow us to better understand how our mea-
surements can alter the state of earth material packings,
whether structurally (µ-CT) or mechanically (acoustics).

Figure 39: A tomography scan (1mm Diameter) of a layer of
glass beads taken by us at LBNL in 2023.

Once we have identified the low frequency peaks in the
Density of Modes that might inform failure in the land-
scape from where the sample was collected, we can apply
computational methods like Hubert’s laboratory earth-
quake models [16]. Using our understanding of how these
peaks move as the system approaches failure, we can cal-
ibrate current geological monitoring instrumentation to
detect when different types of earth materials might lose
rigidity as described in Section 8.1.
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