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Abstract. This thesis explores the Alcuin Number problem. Our goal
is to categorize all Small-Boat graphs for a given vertex cover number
τ(G) = n ∈ N. We attempt this by developing a family of Small-Boat
Subgraphs (SBSs), which are configurations that if present in a graph G
ensure that G is small boat. We provide the complete list of all such SBSs
for |τ(G)| = 1, |τ(G)| = 2 and |τ(G)| = 3 and also provide a method to
find SBSs for larger τ(G) by combining smaller SBSs.
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1. Introduction

You must cross a river in your boat, which can hold up to one other entity
(we say the boat has “size 1”). You have a fox, a goat and a piece of cabbage
that must all make it to the other bank. If you leave the fox with the goat,
the goat is eaten. If you leave the cabbage with the goat, the cabbage is
eaten. [5, p. 1]

The solution is as follows.
• First you must transport the goat.
• Then, return to the first bank, take the fox to the second bank.
• Since you cannot leave the fox and the goat together, you must take

the goat back to the first bank.
• Then, take the cabbage to the second bank, leaving the goat on the

first bank.
• Finally, return one last time for the goat.

Now consider the possibility, what if you had two foxes? This problem is
now unsolvable with a boat of size 1. This is because you are now unable to
leave the goat on the first bank to pick up the cabbage, as it would be left
with the second fox (Try it!). In this case, you need a boat of size 2 to solve
the riddle.1

The small-boat/large boat problem is a generalization of this riddle that
asks a simple question. For any given number of animals, and any possible
set of interactions between them, what is the smallest boat size required to
transport them across?

Often, these problems are represented using graphs [2, p. 1], where the
vertices represent animals, and an interaction (one animal eating another) is
represented by an edge connecting the two vertices. For example, the original
fox-goat-cabbage problem would be represented by the following graph.

Goat

Fox Cabbage

Note that to us, being eaten or eating another animal is identical math-
ematically speaking, since we are attempting to avoid any interactions at
all. So, a fox-goat-cabbage graph can be looked at as a fox-goat-fox graph
instead! Thus, all graphs are undirected. In addition to this, all graphs are
simple, which means there are no loops or multiple edges between vertices,
as an animal will never eat itself and an animal cannot eat another multiple
times.

1With a boat of size 2, it is quite easy to solve. You can keep the goat in the boat and
transport the foxes and cabbage over one by one.
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2. Background and Definitions

2.1. The Alcuin Number Problem. This thesis aims to find the Al-
cuin Number for any simple, undirected graph G. The Alcuin Number
ALCUIN(G) is equal to the smallest possible boat size necessary to transfer
all the vertices (animals) across a river safely (by avoiding the interactions
represented by edges in G).
Definition 2.1. [1, p. 97] [3, p. 317] A vertex cover of a graph G = (V,E)
is a set of vertices V ′ ⊂ V where every single edge in G has an end vertex
in V ′. The vertex cover number of G is the number of vertices in a smallest
possible (minimal) vertex cover of G.

Notation: The vertex cover number of a graph G is written as |τ(G)|
where τ(G) is a minimal vertex cover.2

In general, we assume from this point onwards that any vertex cover we
consider is minimal.

A vertex cover of the graph is extremely important to us, as it provides us
with a smallest set of vertices with the property that every edge in the graph
is adjacent to at least one of the vertices in the chosen set. Later we will see
that τ(G) is the lower bound on the boat size (Proposition 2.4).
Example 2.2. Consider the following graph, where n,m ∈ N.

A

...

a1

a2

an

B

b2

....

bm

b1

A minimal vertex cover of this graph consists of the two elements A and
B, which means that |τ(G)| = 2. This is because when A and B are removed
from the graph, no edges are left. In fact, {A,B} is the unique minimal
vertex cover in this case.
Definition 2.3. [2, Lem 1]. The Alcuin number of a graph, Alcuin(G) is
the smallest possible boat size required to solve the Alcuin River Crossing
problem on G.

In general, it is our goal to calculate Alcuin(G) for any graph G = (V,E),
so let’s find an upper and lower bound for this quantity.

2There may be more than one minimal vertex cover. See Lemma 3.2.
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Proposition 2.4 ([5, Lem 2.1]). Alcuin(G) ≥ |τ(G)|.
Proof. To start the solution to the Alcuin problem for G, we must load into
the boat all vertices in some minimal vertex cover τ(G). Otherwise, we leave
an edge on the first bank after the first step, breaking the rules of the problem.
Therefore, Alcuin(G) ≥ |τ(G)|. �

Small boat graphs are graphs G where Alcuin(G) = |τ(G)|.
Proposition 2.5 ([5, Lem 2.1]). Alcuin(G) ≤ |τ(G)|+ 1.
Proof. It is always possible to solve any graph with a boat of size Alcuin(G) =
|τ(G)|+1. This is because we can put the entire minimal vertex cover on the
boat and use the one extra spot to transfer the rest of the elements over. �

Large boat graphs are graphs G where Alcuin(G) = |τ(G)|+ 1.
In the propositions above, we have shown that |τ(G)| ≤ Alcuin(G) ≤

|τ(G)|+1. So, we see that for any graph G there are only two possible values
for Alcuin(G) i.e, G is either a small boat graph or a large boat graph. This
simplifies things greatly- assuming we know the vertex cover of the graph
(which is usually hard to find). Csorba remarks that, in general, finding the
vertex cover of a graph is an NP-Complete problem [2, p. 4].

Now, our problem can be succinctly stated as: For any given graph G,
is G a small boat or a large boat graph?
Example 2.6. Consider the graph in Example 2.2 above. Since its vertex
cover number is |τ(G)| = 2, we know that if it is a small boat graph, it has
a minimum boat size of 2, and if it is a large boat graph, it has a minimum
boat size of 3. We find out which type it is later in the section (Example
2.11).

Now we move into some graph theoretic definitions that prove useful in
later lemmas. These quantities are related to the vertex cover of a graph and
simplify our solutions down the line.

2.2. Graph Theory Background.
Definition 2.7. [3, p 27] For n ∈ N, the clique Kn is the graph G on n
vertices that is complete. By this we mean that every vertex is connected to
every other vertex in G. The clique number |C| ∈ N of G is the size of the
largest clique in G.
Example 2.8. Consider the following graph G.

1
2

3
4

5

6
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In this case, vertices {1, 2, 3, 4, 5} form a clique K5 (marked in red) as a
subgraph of G. This is clearly the largest clique in G so the clique number
|C| is 5.

Definition 2.9. [3, p. 296] Let G = (V,E) be a graph. A stable set V ′ is
a set of vertices where there are no edges between the elements of V ′. The
anti-clique number |A| of a graph G is the size of a largest stable set A ⊂ G.

Remark 2.10. Given a graph G with a vertex cover τ(G), we fix A ⊂ τ(G).

In Example 3.8 there are 2 largest stable sets {1, 6} and {1, 5} (each with
size 2). So, |A| = 2.

The proof of the following proposition is straightforward.

Proposition 2.11. When τ(G) is a vertex cover (even if it is not minimal),
note that the set complement of τ(G) is an stable set which we write as
τ(G). Also, the complement of a stable set is a vertex cover (though it is not
necessarily minimal)

Finally, we introduce some notation for “solutions” to the Alcuin Problem
for a given graph G. This notation is essential in most proofs below.

Definition 2.12. [2, Section 3] A schedule with boat size b for a graph
G = (V,E) is defined as a finite sequence of triples:

L1 B1 R1(1)
L2 B2 R2(2)

...
...

...(
...)

Ls Bs Rs(s)

The elements of these triples are subsets of V that satisfy the 3 conditions
below. The length of the schedule is the number of triples present in the
schedule. All schedules have odd length.

• For every k, the sets Lk, Bk, Rk form a partition of V . The sets Lk

and Rk are stable sets in G. The set Bk contains at most b elements.
• The sequence starts with L1 = V , B1 = ∅ and R1 = ∅, and the

sequence ends with Ls = ∅ and Bs = ∅, and Rs = V .
• For even k ≥ 2, we have Bk ∪Rk = Bk−1 ∪Rk−1 and Lk = Lk−1. For

odd k ≥ 3, we have Lk ∪Bk = Lk−1 ∪Bk−1 and Rk = Rk−1.
Rk represents the vertices on the right bank, Bk the vertices on the boat

and Lk the vertices on the left bank.

Example 2.13. Consider the graph in Example 2.2 above. It is a small boat
graph. This means we can solve it using a boat of size 2. Consider the
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following schedule.
A,B, a1, a2, ..., an, b1, b2, ..., bm ∅ ∅(1)

a1, a2, ..., an, b1, b2, ..., bm A,B ∅(2)
a1, a2, ..., an, b1, b2, ..., bm B A(3)

Now, we transfer over b1, b2, ..., bm one by one using the empty spot on the
boat:

...
...

...(
...)

a1, a2, ..., an B A, b1, b2, ..., bm(2m+ 3)
a2, ..., an B, a1 A, b1, b2, ..., bm(2m+ 4)
a2, ..., an A,B a1, b1, b2, ..., bm(2m+ 5)

B, a2, ..., an A a1, b1, b2, ..., bm(2m+ 6)

Now we transfer over a2, ..., an one by one using the empty spot on the boat:
...

...
...(

...)
B A a1, a2, ..., an, b1, b2, ..., bm(2m+ 2n+ 7)
∅ A,B a1, a2, ..., an, b1, b2, ..., bm(2m+ 2n+ 8)
∅ ∅ A,B, a1, a2, ..., an, b1, b2, ..., bm(2m+ 2n+ 9)

Therefore, the graph in Example 2.2 is in fact, small boat and solvable with
boat size 2 = |τ(G)|.

Now that we have some notation and background on the topic, we can dive
into some short proofs and lemmas relating to the Alcuin numbers.

3. Schedules and Properties

3.1. Representing a simple graph G. Fix a minimal vertex cover τ(G).
Every connected simple graph G can be broken down into its vertex cover
τ(G) and the stable set τ(G). Each vertex in τ(G) is adjacent to at least one
vertex in τ(G).

Example 3.1. Consider the same example graph from Example 2.2 above. We
have the following:

• τ(G) = {A,B}
• τ(G) = {a1, ..., an, b1, ..., bm} which is a stable set as each vertex in
τ(G) only connects to the vertices in τ(G). In this case each vertex
in τ(G) is adjacent to exactly one vertex in τ(G).
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3.2. Reversible Schedules. A simple observation about schedules, is that
if a schedule works to transport a graph G from the left bank to the right
bank, it can always work backwards to transport the same graph G from the
right bank to the left [2, Lem 2]. Therefore, all schedules are reversible.

3.3. Non-unique minimal vertex covers.

Lemma 3.2. [2, Lem 4.3]3 Any graph G with more than one minimal vertex
cover is a small boat graph.

Proof. Let G = (V,E) have two minimal vertex covers τ(G) and τ ′(G) each
of size n. Then, τ(G) and τ ′(G) form stable sets each of size |V | − n. Define
the following sets.

• X1 = τ(G) ∩ τ ′(G)

• X2 = τ(G) ∩ τ ′(G)

• Y = τ ′(G) ∩ τ(G)

Note the following:
(1) X1 ∪X2 = τ(G), where X1 ∩X2 = ∅.
(2) X1 ∪ Y = τ ′(G), where X1 ∩ Y = ∅.
(3) We also know that Y 6= ∅ and X2 6= ∅ as τ(G) 6= τ ′(G).

We can now propose a schedule with boat size τ(G) = n.
G ∅ ∅(1)

τ(G) τ(G) ∅(2)

τ(G) τ(G)− Y Y(3)

It is possible to leave Y on the right bank because Y ⊂ τ ′(G), which is a
stable set.

Now, there are exactly |Y | slots empty on the boat. We now break X1 into
|Y | sized sets and transport it across to the other bank. This can be done
since X1 is the intersection of two stable sets and is therefore a stable set. In
fact, X1 ∪ Y is a stable set.

Note that since τ(G)−X1 = X2, we are left with X2 on the first bank.

τ(G) τ(G)− Y Y(4)
...

τ(G)−X1 τ(G)− Y Y ∪X1(5)

3I have arrived at this proof independently, but [2] has a different proof of this result,
which looks quite different from the one below.
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Note that since τ(G)−X1 = X2, we are left with X2 on the left bank and
that the right bank now holds Y ∪X1 = τ ′(G).

X2 τ(G)− Y τ ′(G)(5)

At the start of the schedule, we fixed that X2 = τ(G) − τ ′(G) and Y =

τ ′(G) − τ(G). Also, we know that |τ(G)| = |τ ′(G)|. Using these two facts,
we can deduce that |X2| = |Y |. So, using the |Y | spots on the boat, we can
now transfer over X2.

X2 τ(G)− Y Y ∪X1(6)
∅ (τ(G)− Y ) ∪X2 Y ∪X1(7)
∅ ∅ G(8)

So, we have shown that for any graph G with two vertex covers τ(G) and
τ ′(G), it is always a small boat graph. �

Example 3.3. Consider the following graph, which has two minimal vertex
covers, {a, e} and {a, f}. So, in the notation of the proof we have X1 =
{b, c, d}, X2 = {f} and Y = {e}.

a

b

c

e

f

d

Consider the following schedule (with boat size |τ(G)| = 2), which exactly
follows the proof of Lemma 3.2:

a, b, c, d, e, f ∅ ∅(1)
b, c, d, f a, e ∅(2)
b, c, d, f a e(3)

...
...

...
f a e, b, c, d(4)
∅ a, f e, b, c, g(5)
∅ ∅ a, f, e, b, c, g(6)
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Thus, this graph with two minimal vertex covers is small boat.

Lemma 3.2 is useful, because it reduces the number of graphs we are to
consider significantly. In fact, it leaves only one interesting case: when τ(G)
is minimal and unique.

Remark 3.4. From now on, we will assume that for any graph G, τ(G) is
minimal and unique.

3.4. The second and second-last move in a schedule.

Lemma 3.5. The second and second-last B2 and Bs−1 in a schedule are the
same

For any small boat graph G with a unique minimal vertex cover τ(G) and
any viable schedule S, B2 and Bs−1 are both equal to τ(G).4

Proof. Recall from Remark 3.4 that we are considering graphs with unique
vertex covers only.

Notice that every sequence in a schedule starts with B2 = τ(G); otherwise,
L2 is not an stable set. Now, we show that Bs−1 = τ(G) (and Ls−1 = ∅
naturally).

Note the following important information:

(1) Rs−1 is an stable set since the boat is approaching the right bank for
the last time.

(2) We must have Ls−1 = ∅, and Bs−1 ∪Rs−1 = V .
(3) The maximum possible size of Bs−1 is |τ(G)| as we assume G is a

small boat graph.

So, the vertex cover Bs−1 must have size equal to |τ(G)|. By hypothesis τ(G)
is unique which means that τ(G) = Bs−1 as desired. �

This lemma is useful as it provides us with information about how the
vertices in the vertex cover must move during any schedule. We know that
the first and last move must be τ(G), which means that any vertices in the
vertex cover that are transferred to the right bank during the schedule must
eventually be transferred back before the 2nd last step.

Example 3.6. Consider the following graph.

4This is an original proof.
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F

a

b

c

G

This graph is small boat, and has vertex cover {F,G}. Consider the fol-
lowing schedule (|τ(G)| = 2):

a, b, c, F,G ∅ ∅(1)
a, b, c F,G ∅(2)
a, b, c ∅ F,G(3)

c a, b F,G(4)
c F,G a, b(5)
G F, c a, b(6)
G F a, b, c(7)
∅ F,G a, b, c(8)
∅ ∅ a, b, c, F,G(9)

This schedule has its first and last boat B2 = B8 = {F,G}, as expected.

3.5. The third move in a schedule.

Lemma 3.7. For a given small boat graph G, there is always a viable schedule
with B2 = τ(G) and R3 = A5. Where A is define in Remark 2.10.

Proof. Once you have the vertex cover on the boat (B2 = τ(G)), you can
choose to drop a subset of the maximal anticlique off on the right bank, or
the entire anticlique A (R3 = A). Any viable schedule must first involve
dropping off some subset of the anticlique P ⊆ A. In this case, we will show
that we can provide an alternate schedule that has the exact same length
where the only difference is that we drop off the entire anticlique off so that
R3 = A.

Here is the modified schedule.
• First, pick up the vertex cover so that B2 = τ(G), then drop off the

anticlique in step 3 so that R3 = A. The change is that in the original
5This is an original proof.
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schedule we drop off R3 = P ⊆ A so we have |P | < |A| spots on our
boat for step 4, but in the modified schedule we have |A| spots on our
boat.

• Now, in Step 4, we may assume that the original schedule picks up
some vertices from the left bank. We will proceed with the same Step
5 as the original schedule which is always possible as we have strictly
more spots on our boat (|P | < |A|).

• In Step 5, we can drop these elements off on the right bank6, and
move the elements A − P back onto the boat. This is again always
possible since after dropping elements on the right bank we have |A|
slots on the boat, and because our original schedule is viable we know
that moving A−P to the boat is sure to leave any conflicting vertices
on the right bank.

After this point, we follow the remaining steps exactly as in the original
schedule, and we have not changed the length, only changed the first few
steps. Thus, it is always possible to have a schedule with B2 = τ(G) be
followed with R3 = A. �

4. Small-Boat Configurations

Robertson and Seymour showed that for every “minor-closed” family of
graphs, there is a finite set of “forbidden minors” [4]. This theorem is quite
powerful— as it can be applied to many different concepts in graph theory.
For example, we can categorize any graph G as being planar/non-planar or
linked/non-linked.

Following Robertson’s and Seymour’s methods, the goal of this chapter is
to develop a family of subgraphs that inform us if a graph is small boat or
large boat. Note that since removing an edge or contracting an edge can
change the vertex cover of a graph (and therefore its Alcuin Number), small
boat graphs cannot have a set of forbidden minors. So, instead we are looking
for a set of forbidden configurations(to be explained below).

Example 4.1. Consider the graph G below. This graph is small boat as it has
2 vertex covers. τ(G) = {a, d} = {a, c}.

ab
c

d

Here is a subgraph G′ of G formed by removing the edge between d and
c. This graph is the same as the fox-fox-goat-cabbage graph and is therefore
large boat.

6We may assume that Step 5 of the original schedule involves dropping the elements on
the right bank, so we can do the same in the new schedule.



12 ADI ADVANI

ab

c

d

Thus, we have demonstrated that removing an edge that changes the vertex
cover might make a graph large boat, which means that Alcuin small boat
graphs are not in general minor closed.

Definition 4.2. [3, p. 42] An Induced Subgraph G′ = (V ′, E′) of a graph
G = (V,E) is a subgraph where V ′ ⊂ V and an edge e′ between two vertices
v1, v2 exists in G′ if it also exists in G.

Example 4.3. Consider the graph G from the Example 4.1 above. Here is an
induced subgraph H of G.

a

c
d

However, the graph H ′ below is not an induced subgraph of G as the edge
from a to d exists in G but not in H ′.

a c d

Definition 4.4. Let G = (V,E) be a graph with minimal vertex cover τ(G).
A τ -Induced Subgraph G′ = (V ′, E′) is an induced subgraph of G where7:

• τ(G′) ⊆ τ(G)

• If a vertex v in τ(G) is adjacent to a vertex in τ(G′), then it is in
τ(G′).

Example 4.5. Consider the graph G below.

A

a3

a1

a2

a4

B

b2

b3

b4

b1

We have the τ -Induced Subgraph G′ shown below.

7Definitions 4.4 and 4.6 in this section are original.
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A
a2

a3a1

a4

However, G′′ below is not a τ -Induced Subgraph, as a4 is not included in
G′′ but it is connected to A ∈ τ(G′′).

A
a2

a3a1

Definition 4.6. Let G′ be a graph. G′ is a Small Boat Subgraph (SBS) if
whenever G′ is a τ -Induced Subgraph of another graph G, then G is a small
boat graph.

Note that if a graph is an SBS, then by the definition above it must also
be a small boat graph.

SBSs are at the heart of this thesis as they configurations that inform us
about when a graph is small boat, which is what we are looking for! As of
now, we are not ready to develop SBSs of our own, so we will need to develop
some theory before we can take a look at an example (Example 5.5).

5. Classifying Small Boat Subgraphs

We can categorize the different SBSs G′ by the size of their vertex cover
|τ(G′)|. This allows us to approach the problem for |τ(G′)| = n where n ∈ N.

First, however, we introduce a useful Lemma and definition that helps us
simplify the problem.

5.1. The maximal number of universal vertices.

Definition 5.1. A universal vertex u of a graph G is a vertex u ∈ τ(G) such
that u is adjacent to every vertex in τ(G).8

Lemma 5.2 (The maximal number of universal vertices [2, Lem 4.4]). Let
G = (V,E) have a vertex cover τ(G) of size n and τ(G) of size m that
consists of only universal vertices u1, u2, ...um. Let A be a maximal Anticlique
of τ(G).9

• m ≤ 2|A| then G is small boat.
• m > 2|A|then G is large boat.

Proof. Consider a graph G = (V,E) with a vertex cover τ(G). Say there
are n vertices in τ(G). To prove the first statement, we may assume that

8Definitions 5.1, 5.6 and Lemma 5.4 are original work.
9I have arrived at this proof independently, but Lemma 4.4 in [2] shows a similar result.
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τ(G) consists of 2|A| universal vertices. Let’s call these universal vertices
u1, ..., u2|A|.

The largest stable set in τ(G) is A. We can start the schedule as follows:

G ∅ ∅(1)

τ(G) τ(G) ∅(2)

τ(G) τ(G)− A A(3)

This means there are |A| spots on the boat now. So, we can now pick up
u1, ...u|A| in our next step and safely place them on the ending bank while
we pick up A again.

τ(G)− {u1, ...u|A|} (τ(G)− A) ∪ {u1, ...u|A|} A(4)

τ(G)− {u1, ...u|A|} τ(G) {u1, ...u|A|}(5)

Note that τ(G) − {u1, ...u|A|} = {u|A|+1, ...u2|A|}. Now, we can replace
u|A|+1, ...u2|A| with A on the first bank, and transport the rest of the universal
vertices over.

A τ(G)− A ∪ {u|A|+1, ...u2|A|} {u1, ...u|A|}(6)

A τ(G)− A τ(G)(7)

Finally, it is easy to see the solution.

∅ τ(G) τ(G)(8)
∅ ∅ G(9)

So, if there are at most 2|A| universal vertices that make up τ(G), then G
is small boat.

Now all that is left to show is that if there are more than 2|A| universal
vertices, we must have a large boat graph. Assume we have 2|A|+1 universal
vertices.

Suppose for contradiction that the graph with 2|A|+1 universal vertices is
small boat. Then, this graph has a viable schedule with a boat size of |τ(G)|,
and also a viable reverse schedule, which moves elements from the right bank
to the left instead of the other way around.
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(1) The boat size is |τ(G)| and the maximum value of |A| = |τ(G)|.
Additionally, we have 2|A| + 1 universal vertices, so it is impossible
to fit all the universal vertices on the boat at once. Therefore, there
must exist some step in the schedule with univeral vertices on both
the left and right bank. In this case, the boat must be full with τ(G)
(no empty slots).

(2) Let k be the first such step in the schedule where there are more
universal vertices on the right bank than the left. Since there are
2|A|+1 universal vertices, at step k, there must be ≥ |A|+1 universal
vertices on the right bank and ≤ |A| on the left bank. From above,
we know that there is at least one universal vertex on both banks at
step k.

(3) Now, consider the reverse schedule. As stated above, if the graph
with 2|A|+1 universal vertices is small boat, it has a viable schedule
and a viable reverse schedule, both with boat size |τ(G)|. In this
reverse schedule, the step k is now the last step with more universals
on the right bank.10

Therefore, step k is the last step with universals on both banks such that
there are more universals on the right bank(≥ |A|+ 1) than the left bank(≤
|A|). We also know that now the boat must hold τ(G) and that our next
step must involve decreasing the number of universals on the right bank.

However, we can at most leave |A| vertices from our boat on the right bank,
and there are ≥ |A| + 1 universal vertices on the right bank, which means
it is impossible for us to make a swap for the remaining universal vertices
without conflict. Thus, the reverse schedule from the right bank to the left
bank is not viable.

Thus, we have the desired contradiction. �

Example 5.3. Consider the following graph, which has τ(G) = {A,B}.

A

u1 u2

B

The anticlique number of τ(G) is 1 (since either {A} or {B} is the maximal
anticlique), and since 2 ≤ 2 · 1, Lemma 5.2 says this graph is small boat. For
confirmation, we have the following schedule:

10The original schedule transfers elements from the left to the right bank so the reverse
transfers from the right bank to the left bank.
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A,B, u1, u2 ∅ ∅(1)
u1, u2 A,B ∅(2)
u1, u2 B A(3)

u2 u1, B A(4)
u2 A,B u1(5)
A u2, B u1(6)
A B u1, u2(7)
∅ A,B u1, u2(8)
∅ ∅ A,B, u1, u2(9)

Now let’s add one more universal vertex, u3:
A

u1 u2 u3

B

The anticlique number of the vertex cover is still 1, and since 3 > 2 · 1,
Lemma 5.2 says this graph is large boat.

The reason Lemma 5.2 is so useful to finding SBSs is that we can start
with a graph G with just maximum number of universal vertices (2|A|) in
τ(G) and know for a fact that it is small boat. In fact, since the graph is
small boat, is is also an SBS. Using G, we can now remove universal vertices
and replace them with any other vertex and know that the resulting graph
is small boat by the same schedule. So, we can use these graphs with 2|A|
universal vertices as a starting point to find more small boat graphs.

Lemma 5.4. If a graph is small boat, then it is an SBS.

Proof. Consider any graph G that is small boat. This means it has a viable
schedule with boat size |τ(G)|. Now, consider a larger graph H such that G
is a τ -Induced Subgraph of H.

We claim that we can solve this H a boat of size |τ(H)|. This ensures that
H is a small boat graph and therefore G is an SBS. We first put τ(H) on the
boat, which must include τ(G) of course. Let AG be a maximal anticlique of
τ(G), and AH be a maximal anticlique of τ(H).
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Next, we can leave all the elements of τ(H)\AG on the boat, while we
leave all the elements of AG on the right bank, and use the |AG| empty spots
on our boat to shuttle over all the elements in τ(H) that are not connected
to AG. So, during this step, we can certainly shuttle over all the elements in
τ(G)− τ(H) as if an element of τ(H) is adjacent to an element of τ(G), then
it must be inside τ(G) as G is a τ -Induced Subgraph of H. In addition to
τ(G)− τ(H), we may be able to shuttle over some elements of τ(G) that are
not connected to AG.

Finally, since G is a small boat graph, we can move the the rest of τ(G)
over with the |AG| slots on the boat by solving the graph G exactly as per its
schedule. We know this can always be done using Lemmas 3.5 and 3.7. Since
G is a small boat graph, there is a viable schedule that involves us dropping
off AG on the right bank and then transferring over the rest of G over with
the |AG| spots opened up on the boat. The other elements H\G have no
effect as they do not interact with elements of τ(G).

In essence, what we are doing is leaving all the elements of τ(H)\AG on
our boat and then solving the G graph with the remaining |AG| spots, hence
making H a small boat graph. �

Note that since every small boat graph is an SBS, we know that every
small boat graph G contains an SBS, which may be improper (i.e. G itself).
This implies that a graph is an SBS if and only if it is small boat.

Example 5.5. We’ve already seen that the fox-goat cabbage graph G is small
boat with |τ(G)| = 111.

A

a1 a2

Using Lemma 5.4, G is an SBS. Now consider the following graph H, which
has G as a τ -Induced Subgraph (m is an arbitrarily large finite number.)

A

a1

a2

B

b2

....

bm

b1

Then, H is small boat because it contains the SBS G. Here τ(H) =
{A,B} and a schedule that illustrates the proof of Lemma 5.4. Note that

11We can also confirm this using Lemma 5.4.
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in the schedules below, we will express the vertices {x1, ..., xn} as ~x to avoid
clutter and improve readability. This applies to all schedules from this point
onwards.

Here is the schedule:

A,B, a1, a2,~b ∅ ∅(1)

a1, a2,~b A,B ∅(2)

a1, a2,~b B A(3)
...

...
...(4)

a1, a2 B A,~b(5)

a1 B, a2 A,~b(6)

a1 B,A a2,~b(7)

A B, a1 a2,~b(8)

A B a1, a2,~b(9)

∅ A,B a1, a2,~b(10)

∅ ∅ A,B, a1, a2,~b(11)

Here, we are keeping B on the boat while following the schedule to show
H as a small boat graph.

Definition 5.6. A maximal set of Alcuin graphs (referred to as a maximal
set.) {G} is a set of small boat graphs such that if any vertex v is added
to the graph without changing τ(G), or any edge e is added between two
elements of τ(G), the resulting graph is either still a part of the set or no
longer a small boat graph.
It is possible for a maximal set of graphs to be arbitrarily large (See Example
5.8).

Example 5.7. The following set of graphs {H} is maximal. This particular
set of graphs H includes graphs H with τ(H) = {A,B},2 universal vertices
u1 and u2, and n vertices ai connected to A and m vertices bj connected
to B, where n and m are arbitrarily large. All graphs in this set have very
similar schedules (See Section 6.13).
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A

...

a1

a2

an

B

b2

....

bm

b1

u1

u2

We explore the set of graphs in much more detail in Section 6.13, but for
now, note that adding another a or b vertex still leaves us in the same set.
Therefore, the only vertex/edge we can add to this graph without changing
the vertex cover is another universal u3. However, adding u3, connected to
A and B, however, makes the resulting graph large boat (again, we provide a
detailed argument later in Section 6.13). Therefore, the set of graphs of this
form is maximal.

In a sense, a maximal set {G} is a set of graphs that are as close to being
large boat as possible without being large boat. The maximal sets are exactly
what we are looking for, as each small boat graph is an induced subgraph
of an element of a set and therefore if we find all the maximal sets we can
account for all non-maximal SBS graphs underneath them.

Now, we can succinctly state our goal- which is to categorize all the maxi-
mal sets for any |τ(G)| = n. In doing so, we also account for all the induced
subgraphs (non-maximal SBSs) and therefore account for all the SBSs.

Note that as we categorize the maximal sets of SBSs for τ(G) = n, we will
only count graphs that do not contain SBSs with smaller τ(G) = m < n as
these are already accounted for in the catalog for τ(G) = m SBSs.

5.2. Naming graphs. As we attempt to categorize SBSs for larger |τ(G)|,
the graphs become increasingly complicated. This section aims to minimize
clutter and improve efficiency by assigning a naming convention12 by which
each SBS can be named based on unique characteristics. The naming con-
vention goes as follows:

For a graph with |τ(G)| = n, we assign the name:
Gn,A,v1,v2,v3,...,vn−1;un

where v1 is the number of elements of τ(G) with linked degree-one vertices in
τ(G), v2 is the number of unordered pairs of elements of τ(G) each connected
to degree-two vertices in τ(G), and vi is the number of unordered i-tuples

12This naming convention is original work, so there are no references attached.
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in τ(G) connected to degree-i vertices in τ(G). Finally un is the number of
universal vertices. If v1, v2, ..., vn−1 terminates in a string of zeros, then we
cut out those zeros.

Let’s look at a few examples.

Example 5.8. The graph below has |τ(G)| = 2, and |A| = 2. It also has
degree one vertices {a1, ..., an} only connected to one element of τ(G), and
finally, 3 universal vertices {u1, u2, u3}. Therefore, we call it G2,2,1;3.

A
...

a1

a2

an

u1

u2

u3

B

Example 5.9. The fox-goat-cabbage graph has |τ(G)| = 1, and |A| = 1.
Additionally, it has 2 universal vertices {u1, u2}. Therefore, we call it G1,1;2.

Aa1 a2

Going forward, we will use this naming convention for all SBSs.

5.3. The case of |τ(G)| = 1.

Example 5.10. Continuing Example 5.9, consider the fox-goat-cabbage graph
G1,1;2. Consider the set {G1,1;2}. This set only contains a singular element.
13

Au1 u2

In this case, τ(G) = {A}. The schedule is:

13The classification of graphs in Sections 5.3 and 5.4 is original work. There are no
references.
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A, a, a ∅ ∅(1)
a, a A ∅(2)
a, a ∅ A(3)
a a A(4)
a A a(5)
A a a(6)
A ∅ a, a(7)
∅ A a, a(8)
∅ ∅ A, a, a(9)

By Lemma 5.2, we cannot add any vertices connected to A without mak-
ing G1,1;2 graph large boat. Hence, the set {G1,1;2} is maximal. Removing
any of the universal vertices is redundant as the resulting graph (although
small boat) would have the same schedule as G1,1;2 and therefore is already
accounted for in as a subgraph of G1,1;2 in the maximal set {G1,1;2}. So,
{G1,1;2} is the only maximal SBS with |τ(G)| = 1.

5.4. The case of |τ(G)| = 2.

Example 5.11. As we move to higher |τ(G)|, finding all the SBSs becomes
much more complicated. We can start with the maximum number of universal
vertices for a graph with |τ(G)| = 2, which is the set {G2,2,0;4} (represented
below). This set also contains only one element for the same reasons as
{G1,1;2}.

A

u1

u2

u3

u4

B

In this case, τ(G) = {A,B}. The schedule is:
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A,B, u1, u2, u3, u4 ∅ ∅(1)
u1, u2, u3, u4 A,B ∅(2)
u1, u2, u3, u4 ∅ A,B(3)

u3, u4 u1, u2 A,B(4)
u3, u4 A,B u1, u2(5)
A,B u3, u4 u1, u2(6)
A,B ∅ u1, u2, u3, u4(7)

∅ A,B u1, u2, u3, u4(8)
∅ ∅ A,B, u1, u2, u3, u4(9)

This graph is small boat by Lemma 5.2 and a SBS by Lemma 5.4 respec-
tively. If we add a single universal vertex, the graph is large boat by Lemma
5.4. If we add a degree-one vertex connected to A or B, it is easy to check
that the resulting graph is also large boat. 14 Additionally, connecting A to
B reduces the anticlique number A and also makes this graph large boat by
Lemma 5.2. So, this graph set is maximal.

Now that we have a first example of a maximal set, we can reduce the
number of universal vertices and add other edges in their place to create
other maximal small boat subgraphs. So, Lemma 5.4 gives us a “starting
point”, i.e. a small boat graph with a maximal number of universal vertices
from which we can generate other SBSs with |τ(G)| = 2.

Example 5.12. Let’s prune one universal vertex u4. Now, we have some
“space” to add more vertices to τ(G). We also ensure that our graph set
has the most amount of vertices possible, giving us a maximal set with 3
universal vertices.

We can add degree-one vertices connected to A or B. One can check that
if we add one degree-one vertex to each of A and B, our graph becomes large
boat. So, without loss of generality, we can add degree-one vertices to A. We
claim that we can add an arbitrary number (n) of degree-one vertices. This
gives the raph set {G2,2,1;3} below. This set has an arbitrarily large number
of graphs, similar to the one in Example 6.8.

14Note that any vertex added must connect to τ(G) in order to not change the vertex
cover as per Definition 5.6.



ALCUIN NUMBERS 23

A

...

a1

a2

an

u1

u2

u3

B

In this case, τ(G) = {A,B}. The schedule is:

A,B, u1, u2, u3,~a ∅ ∅(1)
u1, u2, u3,~a A,B ∅(2)
u1, u2, u3,~a A B(3)

...
...

...(4)
u2, u3 A, u1 B,~a(5)
u2, u3 A,B u1,~a(6)
A,B u2, u3 u1,~a(7)
A,B ∅ u1, u2, u3,~a(8)

∅ A,B u1, u2, u3,~a(9)
∅ ∅ A,B, u1, u2, u3,~a(10)

At this point, we have shown that this graph set is small boat and therefore
a SBS. We cannot add vertices connected to A, as in that case we are still
considering the same graph set {G2,2,1;3}, and one can check that adding a
single degree-one vertex to B or a universal vertex to A and B makes this
graph set large boat. Finally, adding the edge between A and B also makes
the graph set large boat. So, we can no longer add vertices or edges without
changing |τ(G)|, which means that the set above is maximal.

Example 5.13. Next, prune one more universal vertex u3. Now, we can add
an arbitrary number of degree-one vertices to A and B like so. (m and n are
arbitrarily large finite numbers.) This gives the graph set {G2,2,2;2} below,
with an arbitrarily large number of graphs.
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A

...

a1

a2

an

B

b2

....

bm

b1

u1

u2

The vertex cover here is τ(G) = {A,B}. The schedule is:

A,B, u1, u2,~a,~b ∅ ∅(1)

u1, u2,~a,~b A,B ∅(2)

u1, u2,~a,~b A B(3)
...

...
...(4)

u2,~b A, u1 B,~a(5)

u2,~b A,B u1,~a(6)

A,~b B, u2 u1,~a(7)

A,~b B u1, u2,~a(8)
...

...
...(9)

A B u1, u2,~a,~b(8)

∅ A,B u1, u2,~a,~b(9)

∅ ∅ A,B, u1, u2,~a,~b(10)

Example 5.14. Continuing with Example 5.13, we can no longer add more
degree-one vertices to A or B as we are still in the same graph set {G2,2,2;2}.
One can check that we cannot add another universal vertex either. But, we
can add the edge between A and B. This new set is {G2,1,2;2} (drawn below).
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A

...

a1

a2

an

B

b2

....

bm

b1

u1

u2

It turns out that this graph set (G2,1,2;2) is also small boat, and by the exact
same schedule as graph set {G2,2,2;2} (Example 6.13). So, the previous set was
not maximal, and this one is now maximal15. This is because we cannot add
any single degree vertices a or b as that still leaves us in the same graph set
{G2,1,2;2}. Additionally, we cannot add any edges without changing |τ(G)|.
Finally, one can check that adding a universal vertex makes the resulting
graph set large boat. Therefore, this the graph set {G2,1,2;2} is maximal.

At this point, any degree one vertices connected to A or B result in a graph
in the same maximal set. Additionally, we can not add any edges without
changing |τ(G)|. So, there are no more vertices or edges left to add if we
remove one universal vertex, which is why we can now claim that we have
found all the maximal graph sets of SBSs with |τ(G)| = 2 (Listed below).

A

u1

u2

u3

u4

B
A

...

a1
a2

an
u1

u2

u3

B A
...

a1
a2

an

B
b2

....
bm

b1u1

u2

Therefore, all small boat subgraphs with |τ(G)| = 2 must be induced
subgraphs of graphs from the three(maximal) graph sets listed above.

5.5. The case of |τ(G)| = 3. After going through a similar process, we can
isolate all the maximal sets of SBSs with |τ(G)| = 3. (The examples were
exhaustively checked but the details are not provided here).16

First, using Lemma 5.2, we have {G3,3,0,0;6} below.

15Note that this is the graph from Example 3.8
16The same applies for the unjustified claims in sections for |τ(G)| = 1, |τ(G)| = 2.

These classifications are original work and so there are no references attached.
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A

u1

u2u3

u4

u5

u6
B

C

Reducing the number of universal vertices by 1, we arrive at {G3,3,1,0;5}.

A

u1
u2

u3

u4
u5

an
a1

...

B

C

From here, when we drop one universal, we are able to achieve 2 differ-
ent graphs with 4 universal vertices each. The first one, presented below is
{G3,2,2,0;4}.
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A

u1

u2

u3

u4

an

...
a1

B

bm

b1

....
C

We also have {G3,3,2,1;4}.

A

u1

u2

u3

u4

an
a1

...

x1 xn

.....

B

b1

....
bm

C

Dropping a universal from {G3,2,2,0;4} creates a graph containing {G2,1,2;2}
as an SBS, which means it is not counted in the list of SBSs with |τ(G)| = 3.
However, dropping a universal vertex from {G3,3,2,1;4} gives our final SBS:
{G3,2,3,1;3} as shown below.
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A

u1

u2

u3

a1

... an

x1
xn

.....

B

....

bm

b1
C

c1

cp

......

All other SBSs are not maximal or contain SBSs with smaller |τ(G)| within
them and therefore are not counted. These 5 graph sets above ({G3,3,1,0;5},
{G3,3,1,0;5}, {G3,2,2,0;4}, {G3,3,2,1;4} ,{G3,2,3,1;3}) then are the complete list of
maximal sets of SBSs with |τ(G)| = 3.

6. Splitting Boats

As we move to higher |τ(G)|, SBSs become increasingly complicated and
hard to check. Our method for manually finding all maximal sets of SBSs
becomes inefficient, and we require other methods to find the maximal sets
of SBSs. This section aims at building maximal SBSs of larger |τ(G)| from
smaller SBSs. 17

Definition 6.1. We can add two SBSs G1 and G2 together (to form a new
graph G3) with one simple step. We take the disjoint union and then connect
the universal vertices of G1 to τ(G2) and the universal vertices of G2 to τ(G1),
thereby maintaining their universality 18.

Lemma 6.2. If we add together two SBSs G1 and G2 to form a graph G3,
then the resulting G3 is also an SBS.

Proof. If we add SBSs G1 and G2 to form G3, then to show that G3 is also
an SBS, we need to prove that we can solve G3 with a boat size of |τ(G3)|.
We know that since G1 and G2 are each SBSs, they each have a viable
schedule with boat size |τ(G1)| (say S1) and |τ(G2)| (say S2) respectively

17Section 6 is original work, so there are no references.
18So they remain connected to all vertices in τ(G3)



ALCUIN NUMBERS 29

(These schedules might not be of the same length). We also know that
|τ(G3)| = |τ(G1)| + |τ(G2)|, since when we add G1 and G2, neither vertex
cover changes, and we simply link the universal vertices to the other vertex
cover.

So, our boat must have a size of |τ(G1)| + |τ(G2)|, which means we can
“split” it into two segments B1 and B2. B1 will be the first |τ(G1)| slots
on the boat, and will be assigned to G1, and similarly B2 will be the next
|τ(G2)| slots assigned to G2. With this in mind, let’s begin.

6.0.1. Step 1: First, we must transport the vertex cover τ(G3) = τ(G1) +
τ(G2). Following the individual schedules for the SBSs G1 and G2, we first
pick up τ(G1) (on B1) and τ(G2) (on B2).

6.0.2. Step 2: Again, following the individual schedules (S1 and S2), we can
now leave A1 and A2 on the right bank (as per Lemma 3.7)19. At this point,
B1 has |A1| empty slots and B2 has |A2| empty slots.

6.0.3. Step 3: Now, we must continue to follow the schedules S1 and S2. We
use the |A1| and |A2| open slots on B1 and B2 to transfer over any vertices
that do not interact with any of the elements of A1 and A2 to the right bank.
We can transfer over all of these without moving anything off the right bank,
so we can choose our schedules S1 and S2 so that they move all these vertices
over without leaving any on the left bank. Since these vertices do not interact
with A1 and A2, we do not have to remove anything from the right bank yet.

Note that at this step, the schedules might differ in length. One schedule
might have more such vertices to transfer over, and in this case, the other
segment must wait until both segments are finished with this process.

At this point, we should have transferred over all the vertices that do not
interact with A1 and A2, and still have |A1| and |A2| slots open on B1 and
B2 respectively.

6.0.4. Step 4: Now, any material that we transfer over will require that we
move elements of A1 and A2 back onto B1 and B2. Note that since the
universal vertices of G1 are now linked to τ(G2) and the universal vertices of
G2 are linked to τ(G1), if we move a single universal vertex over, both A1 and
A2 will need to be moved back onto B1 and B2, filling them up completely
20.

So, at this point, we must choose to move over at most |A1| and |A2|
elements over and we can break the problem down into cases.

19Since A1 and A2 are the maximal anticliques for G1 and G2, A1 + A2 = A3 becomes
the maximal anticlique for the sum G3.

20Recall that they have |A1| and |A2| spots open respectively
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Either both segments B1 and B2 contain a universal vertex (Case 1), only
one segment B1 or B2 contains a universal vertex (Case 2) or neither segment
contains a universal vertex (Case 3).

• In Case 1- Both segments contain a universal vertex. In this case, we
can proceed as per the schedules S1 and S2. We will transfer over the |A1|
and |A2| vertices as per S1 and S2 respectively, and then move A1 and A2

back onto the segments B1 and B2 leaving us with B1 holding τ(G1) and B2

holding τ(G2).
At this point, we must swap out |A1| and |A2| for the remaining elements

on the left bank as per S1 and S2. There will be no universal vertices left
on the left bank after this because if there were, we wouldn’t be to swap
any element from the boat B1 or B2 and this would make S1 or S2 unviable
schedules.

At this point, all we have to do is shuttle the |A1| and |A2| elements we
just picked up across to the right bank, and return one last time for A1 and
A2, to empty the left bank, leaving us with τ(G1) and τ(G2) on the boat.
Finally, we transfer τ(G1) and τ(G2) over, and the schedule is complete21.

• In Case 2- One segment contains a universal vertex and the other does
not. Without loss of generality, let’s say that the next step for S1 involves
transferring at least one universal vertex to the right bank, and therefore
moving A1 onto B1, and the next step for S2 does not involve a universal
vertex, rather some other vertices that require us to move only a part of A2,
lets say Q ⊂ A2 onto the boat, leaving us with some space.

In this case, we can “pause” the progress of S1 while we transfer the other
vertices using B2 to the right bank and transfer Q onto B2. As we follow the
schedule S2, we might have to transfer more and more vertices into Q until
one of two things happens.

The first is that Q = A2 and B2 is filled.
The second is that Q remains a proper subset of A2 and the next step in

the schedule S2 is to transfer over a universal vertex and thus move the rest
of A2 back onto B2. 22

In both cases, the next step in S2 involves us filling up B2 with A2, and
so we are able to “unpause” S1 and transfer the universal vertex in B1 over
now. At this point, all of A1 will also need to be moved onto B1 as there is
now a universal vertex on the right bank, as per schedule S1.

21We can always transfer over the remaining vertices with the |A1| and |A2| slots opened
up by dropping A1 and A2 on the left bank because in Step 3 we transferred all vertices
that do not interact with A1 and A2 over already!

22It is technically possible to end up with a graph where Q is not equal to A2 AND there
are no universal vertices left to transfer, but this means that there are no vertices in τ(G2)
attached to one element of τ(G2), which immediately makes the resulting G3 small boat
as it then contains an induced subgraph of the maximal SBS G1, 1, 2 (Fox-Goat-Cabbage
Graph).
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So, now both of our schedules S1 and S2 have reached a point where B1

holds τ(G1) and B2 holds τ(G2) with no extra room on the boat. Now, we
are in Case 1, as all that is left to do is swap A1 and A2 for the last |A1| and
|A2| elements on the left bank as described above (in Case 1).

We transfer over the last |A1| and |A2| elements, return for A1 and A2 and
transfer over τ(G1) and τ(G2) to finish the schedule successfully.

• In Case 3- Neither segment contains a universal vertex. In this case, we
again can proceed as per the schedules S1 and S2. We can transfer over |A1|
and |A2| vertices as per S1 and S2 respectively, and then move the relevant
clashing subsets of A1 and A2 (say P and Q) back onto the segments B1 and
B2 leaving us with B1 holding τ(G1)−A1+P and B2 holding τ(G2)−A2+Q,
where P ⊂ A1 and Q ⊂ A2.

Following this, we continue to shuttle over vertices that clash with the
remaining parts of A1 and A2 on the right bank, and move the clashing
vertices of A1 and A2 onto the boat to join P and Q.
(1) We may continue in this fashion (following S1 and S2) until P = A1 and

Q = A2 which makes both boats full. Note that one of P or Q might
become equal to A1 or A2 respectively before the other, and in this case,
we must wait for the other segment to catch up.
After we are at the point when P = A1 and Q = A2, all we have to do
is continue with the schedules S1 and S2 as at this point, both segments
have no space left on them. B1 contains τ(G1) and B2 contains τ(G2)
and we must return to the left bank.
If there are any universal vertices in G1, then A1 will be moved to the left
bank and they will all be moved onto the boat. Similarly, all universals
from G2 will be moved onto the boat, leaving A1 and A2 on the left
bank with no other clashing vertices. We can now shuttle over all the
universals to the right bank, and return with |A1| and |A2| spots on each
segment respectively.
From here, the universal vertices are already transferred over, so all we
have to do is continue to follow the steps of S1 and S2 and we should be
able to transfer the remaining vertices over with the |A1| and |A2| spots
on our boat before finally returning one last time for A1 and A2. Then,
the left bank is empty, and our boat contains τ(G1) and τ(G2), which
we take to the right side and complete the problem.

(2) Another possibility, is that as we move vertices over, one segment, say
B1, contains a universal vertex that clashes with the remaining elements
of A2. In this case, we follow the steps of Case 2 and are able to solve
the problem easily.

(3) Finally, the last possibility is that both segments B1 and B2 contain a
universal vertex that clashes with the remaining elements of A2 and A1

respectively. In this case, we simply follow the steps of Case 1 and are
able to solve the problem easily.
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So, we have shown that if we add two small boat graphs (and therefore
SBSs) G1 and G2, then the resulting G3 is also a small boat graph (and an
SBS).

Note that since the universal vertices of G2 are linked to τ(G1) and the
universal vertices of G1 are linked to τ(G2) the new graph G3 is a unique
configuration that is not an SBS under G1 or G2, rather a unique small boat
graph itself. �

Note that this proof is a method for forming unique SBS graphs, but does
not necessarily mean that all SBS graphs can be formed via this method
from smaller SBS graphs. Finally, note that the SBS sets that are formed
via this method might not be maximal (see Example 6.4). Despite these
drawbacks, this method allows us to find new SBSs with ease, after which we
can also easily check if the result is maximal before adding it to our list for
any |τ(G)| = n.

Example 6.3. We can add together the graphs G2,1,2;2 and G1,1;2 to create
the graph G3,2,2,0;4. Here are G2,1,2;2 and G1,1;2 below:

A...

a1

an

B ....

bm

b1

u1

u2

C

u3

u4

When added together, we get G3,2,2,0;4, with 4 universal vertices, {a1, ..., an},
{b1, ...., bm} and an edge between A and B.
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A

u1u2u3u4

an

... a1

Bbm

b1

....
C

Here is the schedule as per Lemma 6.2. We start with the vertex covers
{A,B} and {C}. Then drop off A1 and A2

A,B,C, u1, u2, u3, u4,~a,~b ∅ ∅(1)

u1, u2, u3, u4,~a,~b A,B,C ∅(2)

u1, u2, u3, u4,~a,~b A B,C(3)

Now, since B2 has no vertices it can bring over in Step 4, we can wait for
B1 to transfer over {a1, ..., an}. Then, we bring over the first two universals
(we are in Case 1) one from S1 and one from S2.

...
...

...(4)

u3, u4,~b A, u1, u2 B,C,~a(5)

u3, u4,~b A,B,C u1, u2,~a(6)

Now, we continue with S1 and S2 as we swap A1 and A2 onto the left bank
as we shuttle over the last of the universal vertices {u3, u4} (as described in
Case 1 in Lemma 6.2).
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A,C,~b B, u3, u4 u1, u2,~a(7)

A,C,~b B u1, u2, u3, u4,~a(8)

At this point, we can use the remaining slot of B1 to shuttle over the
remaining vertices on the left bank {b1, ..., bm}, after which we return one
last time for the vertex cover.

...
...

...(9)

A,C B u1, u2, u3, u4,~a,~b(8)

∅ A,B,C u1, u2, u3, u4,~a,~b(9)

∅ ∅ A,B,C, u1, u2, u3, u4,~a,~b(10)

It turns out that G3,2,2,0;4 is maximal as we checked for it in Section 6.5.In
fact, 3 of the 5 maximal sets of SBSs with |τ(G)| = 3 can be created using
this addition technique (all being maximal).

• G1,1;2 +G2,2,0;4 = G3,3,0,0;6

• G1,1;2 +G2,2,1;3 = G3,3,1,0;5

• G1,1;2 +G2,1,2;2 = G3,2,2,0;4 (Described above)

Example 6.4. It is possible, as stated above, to add two maximal SBS graphs
for a resulting graph that is not maximal. Consider the addition G2,1,2;2 +
G2,1,2;2 = G4,2,4,0,0;4.

The graph G4,2,4,0,0;4 is not maximal as we can add degree two vertices to
create the small boat graph G4,2,4,1,0;4 (Shown below).
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A

u1u2u3u4

...
an

a1

x1
.......xr

B
....

bm

b1

C .....
c1

cp

D

dqd1 ......

Here is the attempted schedule for G4,2,4,1,0;4 that follows the proof of Lemma
6.2:

A,B,C,D, u1, u2, u3, u4,~a,~b,~c, ~d, ~x ∅ ∅(1)

u1, u2, u3, u4,~a,~b,~c, ~d, ~x A,B,C,D ∅(2)

u1, u2, u3, u4,~a,~b,~c, ~d, ~x A,C B,D(3)

Now we can shuttle over {a1, ..., an}, {b1, ..., bm}, {x1, ..., xr}, and then move
over the first universal vertices u1 and u2.

...
...

...(4)

u1, u2, u3, u4,~b, ~d A,C B,D,~a,~c, ~x(5)

u3, u4,~b, ~d A,C, u1, u2 B,D,~a,~c, ~x(6)

u3, u4,~b, ~d A,C,B,D u1, u2,~a,~c, ~x(7)

Finally, we swap A,C for u3 and u4 and finish the schedule.
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A,C,~b, ~d u3, u4, B,D u1, u2,~a,~c, ~x(8)

A,C,~b, ~d B,D u1, u2, u3, u4,~a,~c, ~x(9)

A,C B,D,~b, ~d u1, u2, u3, u4,~a,~c, ~x(10)

A,C B,D u1, u2, u3, u4,~a,~c, ~x,~b, ~d(11)

∅ A,C,B,D u1, u2, u3, u4,~a,~c, ~x,~b, ~d(12)

∅ ∅ A,B,C,D, u1, u2, u3, u4,~a,~c, ~x,~b, ~d(13)

So, the graph G2,1,2;2 + G2,1,2;2 = G4,2,4,0,0;4 is not maximal as we have
shown the graph G4,2,4,1,0;4, that is formed by adding degree two vertices
{x1, ..., xr} to G4,2,4,0,0;4 is a small boat graph.

This serves as a counterexample to the fact that the sum of two maximal
small boat graphs is also maximal.
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